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ABSTRACT -This paper proposes a new technique, a node-driven parse pruning
technique, in pruning the less probable parses for GLR parsing algorithm. Without decreasing
the efficiency of GLR parsing, this technique estimates the number of parses in the GSS

(graph-structured stack) based on the number of expanded nodes during the parse process.
We show the evaluation results of various beam width settings for pruning, and compare the
parse time and space consumption against full parsing results. Our node-driven parse pruning
algorithm allows pruning in a left-to-right manner without modifying the GSS.

KEY WORDS -Probabilistic GLR parsing, parse pruning, GSS, beam search.
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1 Introduction the parse candidates according to their
likelihood. The preciseness in distributing
the parse probabilities into each partial parse
tree is essentially considered for applying the

pruning t,e(~hlliq1l(~. 'rhiR pnmillg technique
is generally proposed for any probabilistic
parsiug models 11.pplied to t,he GLR parsing

'cl.lgorithlll. How(~ver, thl~ probabilistic GLR
parsing model [9, I L] is introduced to eveluate

PruniIlg is all essential paradigIIl to reduce
the search spa<:e in parsing. The idea of
pruning iR to exclude hypotheReR from flIrther
investigation if the parses tunl out to be
tmlikely, o,\.-;ed on cvaulation of partial data.
The efli(:i(~llc'y of prulling tet~hllique depends
mostly on the parsing paradigm \'lhich ranks



state nodes may be merged and be Common
to several different sub-parses. Therefore,
any undesirable less-probable parses that end
up with the same state nodes are included
within the beam, which leads to an inefficient
beam search. It is also possible that the
most probable parses be overlooked because
of inaccuracy in scoring and parse estimation.

Pruning with a beam search technique is
widely discussed in the speech processing
community [12, 5, 8, 16]. Steinbiss et
al. [12] give a good summary of previous
research on beam search methods and propose
some improvements to beam searching, as
histogram pruning. This method introduces
an additional pre-specified upper limit on the
number of active points per frame (or active
nodes per time frame) to limit the expansion
of hypotheses. The result of their experiments
show that the search space is efficiently
reduced by observing the distribution of the
number of states over the parse.

In this paper, we propose a new
method for pruning parses that have a
lower probability than parses within a
predetermined beam width using a histogram
pruning-like algorithm called the node-driven
parse pruning algorithm. The number of
expanded nodes is effectively used to estimate
the number of parses in the GSS. We also
show the evaluation results of various beam
width settings, and compare the parse time
and space consumption against full parsing
results. Onr node-driven parse pruning
algorithm allows pruning in a left-to-right
manner without modifying the GSS.

the pruning technique because of its efficiency
over all other models on GLR parsing as
reported in [10]

Extracting all possible parses from a packed
parse forest is crucially constrained by both
time and memory space concerns. Carroll
and Briscoe [2] have proposed a method for
extracting the n-best parses from a complete
packed parse forest. However, their method
still requires the parser to parse to completion,
and then identifies the n-best parses from
the resultant packed parse forest. Their
method can only save time in the actual
extraction of the n-best parses, and does
not concern itself with time and memory
space consumption during the parse process.
Sentences, in general, are ambiguous because
of the wide-coverage nature of context-free
grammars, but most of the possible parses for
a sentence are pretty senseless. In practice,
it is not reasonable to parse exhaustively to
obtain some of the most probable parses. We
would obtain the results more quickly if it
were possible to prune off the less probable
parses as early as possible.

The compaction of the graph-structured
stack (GSS) prevents us from applying
the Viterbi algorithm [13] directly to GLR
parsing. By way of the GSS, the parse stack is
dynamically changed and does not keep trace
of the various parses. Both of the Viterbi
beam-search methods proposed in [14, 15]
and [16] need additional storage to keep trace
of the parses, which overrides the benefits of
using GSS in GLR parsing.

Lavie and Tomita [7] introduced a beam
search heuristic for GLR* parsing. GLR*
parsing is a noise-skipping parsing algorithm
whicll allows shift operations to be performed
from inactive state nodes of the GSS. This
arnounts to skipping words at any previous
state in the GSS. The purpose of introducing
the bearn search algorithm is to lirnit the
nnrnber of inactive state nodes for performing
shift operations. The algorithrn simply
cOllsiders performing shift operations from
the nearest state nodes until the nurnber of
stat,e nodes reaches the limit. Itl fact, any

2

The probabilistic GLR language model
(PGLR) has previously been proven to be
better than existing models, in particular the
model proposed by Briscoe and Carroll [1]
and the baseline model using a probabilistic
context-free grammar (PCFG), in parsing
strings of parts-of-speech (non-word-based
parsing) [10]. Parsing a sentence from the
morphological level makes the task much



in this case significantly distorts the overall
parse probabilities. Moreover, subdividing
reduce action probabilities according to the
states reached after applying reduce actions
is also redundant because resultant stack-top
states after popping for reduce actions are
always deterministic. B&C thus estimates
parse probabilities lower than they should be.

Considering a parse derivation as a sequence
of transitions between LR parse stacks (T) and
assuming that the current stack a i contains
all the information of its preceding parse
derivation, PGLR defines the probability of a
complete stack transition as:

n
P(T) = II P(li, ai, uilui-l)

i=l

more complex because of the increase of parse
ambiguity stemming from word segmentation
ambiguities and multiple corresponding
sequences of parts-of-speech. In this paper,
we empirically evaluate the preciseness of a
probabilistic model for PGLR against that
for Briscoe and Carroll's model (B&C),
which is based on the same GLR parsing
framework. We also examine the benefits
of context-sensitivity in GLR parsing, of
the PGLR model against the "two-level
PCFG" model [4] or "pseudo context-sensitive
grammar" model (PCSG)-recently presented
in [3]-which has been shown to capture

greater context-sensitivity than the original
PCFG model, by empirical results and
qualitative analysis.

Like the B&C model, PGLR inherits the
benefits of context-sensitivity in generalized
LR parsing (GLR). Its LR parsing table
("LR table" for short) is generated from a
context-free grammar (CFG) by decomposing
a parse into a sequence of actions. Every
action in the LR table is determined by the
pairing of a state and input symbol, so that
it is valid to regard the state/input symbol
pair as the context for determining an action.
As a result, PGLR inherently captures two
levels of context, i.e. global context over
structures from the source CFG, and local
n-gram context from adjoining pre-terminal
constraints. Inui et al. [6] showed that
B&C has some defects in distributing parse
probabilities over the actions of an LR
table. One is that, in B&C, no distinction
is made between actions when normalizing
action probabilities over the states in an
LR table, while PGLR distinguishes the
action probability normalization of states
reached immediately after applying a shift
action, from I;tatel; reached immediately after
applying a reduce action. D&C repeatedly
counts the next input symbol when computing
the probabilitip.8 (though the n(~xt input
symbol is deterministic), if parsing is at the
I;tate reached immediat(~ly cJ.ft.er applying cJ.
reduce action. Redundantly including the
probabilities of the preceding input symbols

where Ii is an input symbol and ai is an
action.

The PGLR model distributes the probability
of a complete stack t.ransition into each
transition by assuming that the stack-top
state (Si) represents the stack information
beneath it, then:

P(li, ai, ailai-l)

{P(lilsi-I)' P(~ISi-l,li)
~ = P(li,ailsi-l)

P(ai!Si-l,li)

(Si-l 

E 58)

(Si-l E 5r)

such that:

L L
lELa(s) aEAct(s,l)

L
aEAct(s,l)

p(a) (for S E 58)

p(a) (for .9 E Sr

where p(a) i!; tJl(~ proo;Loility of an action a,

58 is the t:1;I.--H of Ht.,LtCH re;L<:hed after applying

a shift action, ill(:III(ling the initial state, and

5r is th(~ (:I;I.--H (If :;t.;LI.<~:; rl~;l(:h(~<l after applying

a reduce actioll.

rrherl~forl~, til(~ p;LrHl~ proo;Loility upto th(~
t:urrent Htate (;all IJl~ (:;LI(:ulc1.tc<l and storcd in

the t:urrent Hta(:k-toIJ Htat(~.
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3 The node-dri yen parse prun-

ing algorithm
1. If the number of parses estimated from the

number of state nodes in the GSS is over
the threshold Tt, compute the number of
partial parses, else return.

2. If the number of parses is greater than the
predetermined beam width, then compute
the probabilities for each partial parse and
individually store the sequences of state
tmnsitions with corresponding probability
at each active state node (top node of
each stack), else return.

3. Sort the sequences of state transitions
according to the probabilities and
determine the minimum probability of the
parse within the beam width.

4. Mark sequences of state transitions that
have probabilities less than the minimum
as 'pruned'.

5. Apply the next actions to the active
state nodes only if there is at least one
possible parse (unmarked sequence of state
transitions). For reduce actions, check
reduceable parses with the sequences of
state transitions at the active state nodes.

It is inefficient to compute parse probabilities
for all parses from the initial state successively
up to the current state of parsing, because
we have to keep trace of all possible
parses individually. This also degrades the
benefits of local ambiguity packing in the
graph-structured stack (GSS). To counter this
inefficiency, we observe the number of state
nodes at each stage of parsing time and
compute all possible parses only when the
number is more than a threshold. Since the
number of state nodes in a GSS can be viewed
as an indicator of the degree of ambiguity,
we indirectly estimate the number of parses
by observing the number of state nodes in
the GSS, and apply this as a threshold for
activating the parse pruning process as shown
in Algorithm-I.

The threshold Tt at time t is computed by:

(2)Tt = Gt .nt

where Tt is the estimated number of parse..'! at
time t, Gt is the gain based on the number of
state nodes and the length of the input string
up to time t, and nt is the number of state
nodes at time t.

The gain Gt can be computed by:

G -Ef=l nt_iTt-it- ~L 2
L..i=l nt-i

(3)

where L is the nulIlber of past observations
(a good setting for L is 5, as reported
in [5]). The gain is used in adaptive

prunin~ [5] by regarding a pruning process as
a uon-linear tilIle-variant dynamical system.
In our ilIlplelIlentation, we silIlply set the

gain Gt as a linear time-variant to reduce
the (~Oluputational overhead. Since O\lr bealIl
width is fixed, the estilIlated nulIlber of partial
parses at each parsing time is used to activate
the parse pruning algorithm.

Figure 1 exemplifies the GSS in the process
of parse pruning. Suppose that the beam
width is equal to one, and the first parse
(state sequence (0,3,6,13,9» at node 9 is the
only parse within the beam width. Here, only
the action [re1,14] is executed, with the result
as shown in Figure 1 (b). Note that we do
not extend the stack at active state node 13
because all parses up to state node 13 are
marked to be pruned off. At active state node
17, after trying the action [re1,17], the state
sequence (0,4,11,3,9) which is marked to be
pruned off, is activated. Therefore, the parse
after this action is also disregarded.

As a result, we can parse \vith smaller
memory space and lower computational time
overhead than that required in filii parsing.
However, parsing with this pruning technique
gives appropriate results if and only if the
exploited probabilistic model provides precise
probabilistic estimates for the partial parses.

Algorithm-I. Node-driven parse pruning
process.



are more than 200,000 parses if completely

parsed).
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Figure 1: Parse pruning within a graph-
structured stack. Circled state numbers are
active nodes. All possible parses (sequences
of state transitions) at each active node are
shown in the box pointing to that node. The
action/state pairs after applying the actions
are shown in the square brackets next to the
active nodes.

Figure 2: Parsing accuracy under a varying
beam width for parse pruning.

We evaluated our pruning algorithm
by observing time and space consumption
between full parsing and parsing with the
pruning algorithm at the beam width of
30. Distributions of state nodes against
input symbols in single sentence, are shown
in Figures 3 and 4. It is obvious that
our parse pruning algorithm can drastically
reduce the number of nodes used in parsing
both sentences considered. Consequently, the
parsing time for both sentences is also visibly
reduced because of the reduction in search
space. Parsing time is reduced from 1709.62
seconds to 1.0 seconds and 649.49 seconds
to 5.52 seconds, in parsing the 33 and 36
character length sentences, respectively.

This is because the beam search is an
approximate heuristic method that does not
guarantee that the interpretation of a sentence
is the best possible interpretation.

4 Efficiency of parse pruning
in PGLR

We calculated the efficiency of parse pruning
using the PGLR model for a varying beam
width. Parsing can be sped up by reducing the
beam width, excepting that the correct parses
can potentially be pruned off if the beam
width is too small. Figure 2 shows that PGLR
provides quite a precise probabilistic estimate
for partial parses, in that the parsing accuracy
increases steeply with a small increase in the
beam width. The parser pcrfonns equally well
with a beam width of arollIld 30 ~ with full
parsing. Time consumptioll ill parsing using
our prullillg t.c(~lIlli4Ue is lil)(~ar ill SClltCllC(~
length, while it is exponenti:l.l for full parsin~.
For cxil.mpl<~, Ollr prllllillg t(~chlliqu<~ r(~quir<~s
ollly wko of lll(~ p;l.rsillg lilll(~ rcqllir(~d 1(lr full
palsin~, for 25 c!lil.r;\(;ter lon~ sclltCll(:es (there

Table 1 shows the average efficiency of time
and space conslJlllptioll when parsing with
the node-driven parse prullillg algorithm at a
beam width of :iO, 11.'; (:Olllpared to hIll parsing.

The sel.tin!!; uJr UII~ i>(~i\1Il wi{lth is a t.rade-off

betW(~ell parsill~ a(:(~uri\(~y and parsing time.

In pri\(~ti(:c, it IJca111 widt.h of around 20 is

likely to b(~ HIIf[i(~icllt to produce satisfactory

parsing r(~sultH [(Jr th(~ ATR corpus.



Table 1: Average time and space consumption when parsing with the node-driven parse pruning
algorithm, as compared to full parsing.

Average number of
state nodes per sentence

Node occupancy in parsing a sentence
(33 characten, 121,472 potential parses)

Node occupancy in parsing a sentence
(36 characters, 1,316,912 potential parses)

Figure 3: Distribution of state nodes over
input symbols in parsing a sentence of 33
characters with 121,472 potential parses.

Figure 4: Distribution of state nodes over
input symbols in parsing a sentence of 36
characters with 1,316,912 potential parses.
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Beam searching is an approximate-based
heuristic method that does not guarantee that
the final interpretation of a sentence is the
best possible interpretation. Nevertheless, by
carefully managing the number of parses in
the GSS using the node-driven parse pruning
technique we make significant efficiency
gains in both time and space consumption.
Moreover, when coupled with a precise model
for partial parse probability estimation, our
pruning technique yields the same results as
full parsing at a beam width of about 30,
using about 0.07% of the relative parsing
space and 0.0015% of relative parsing time
over full parsing.

Our node-driven parse pruning algorithm
allows parse pruning in the GSS in a strict
left to right fashion, with the benefit of being
able to disregard less-probable parses at as
early a stage as possible.

Our pruning algorithm also retains the
advantages of the GSS, with neglible cost in
estimating the number of parses in the GSS.

[8] S. Ortmanns, H. Ney, and A. Eiden.

Language-Model Look-Ahead for Large
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Proceeding., of International Conference
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