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ABSTRACT-In this paper, a Micro Genetic Algorithm (MGA) to solving the economic dispatch
(ED) problem with linear decre~ing and staircase incremental cost (IC) functions for combined cycle (CC)
units is proposed. To demonstrate its advantage, the proposed MGA methods with two different encoding
schemes are tested and compared to the unconstrained Brute Force (BF), Simple Genetic algorithm (SGA),
Merit Order Loading (MOL), and equal-lambda based Newton methods on five combined cycle units. As
the ramp rate constraints are taken in account, the proposed MGA solutions are ensured to be feasible. Test
results indicate that the solutions are found to be close to the optimal solution of the unconstrained BF
method and its total fuel costs are lower than those of the SGA, MOL, and Newton methods.
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1. Introduction

Economic dispatch (ED) is used to determine the
optimal schedule of on-line generating outputs so as
to meet the load demand at the minimum operating
cost. The existing ED program, a standard function
of the Energy Management System (EMS), National
Control Center (NCC), Electricity Generating
Authority of Thailand (EGA T), is applicable only
I{)r monotonically increasing incremental cost (IC)
functions which is limited in nexibility. Neither
linear decreasing IC functions nor staircase IC
ttmctions can be handled by the program III.

At present, combined cycle (CC) units of EGA T
system are always scheduled to serve the base load.
However, during light load periods when there are
no other generating units that can further reduce
their outputs, there is a need to vary tile CC units in
an economical and smooth manner instead of a zero-
one discrete basis. Therefore, if the linear
decreasing IC and decreasing staircase IC functions
(or non-convex and non-smooth input-output
functions) of tile CC units are included in the
database, the conventional ED program based on the
equal lambda methodology cannot determine tile
optimal solution [2).
Ong.sakul [I ,2) prol)()~ed the Merit Order Loading
(MOL) method ha~ed ()11 the unit I.mlhda values at



the highest operating outputs to solving the ED
problem with linear decreasing IC and decreasing
staircase IC of CC units. It was shown that the
proposed MOL solution was close to the optimal
solution and the real time implementation was valid
on the existing EMS of EGA T without violating the
ramp rate constraints. However, the monthly fuel
costs of CC units of EGA T are in the order of
several billion Thai baht, a few percent improvement
of the existing ED program for CC units can lead to
substantial fuel cost savings. Accordingly, this paper
will investigate a Micro Genetic algorithm (MGA)
to solving the ED with linear decreasing IC and
decreasing staircase IC which are non-monotonically
increasing functions.

decreasing staircase IC functions of CC units is
proposed. The ramp rate constraints are also taken
into account to insure the feasibility of solutions.
Two different encoding methods including
concatenated and embedded methods are
investigated. The MGA is tested and compared to
Simple Genetic algorithm (SGA), MOL, Newton
and unconstrained BF on a five CC unit system.

Two types of cost functions used for CC generating
units at EGA T can be summarized as follows [I].
Second order ot nomiat cost unction or a CC unit: One
combined cycle unit consists of a series of single-
cycle gas turbines in conjunction with a heat-
recovery steam generator (HRSG). In a closed cycle
operation mode, a cost function is obtained by
curve-fitting among at least three test points using
the least squares method. In fact, the second order
polynomial cost function for a CC unit is estimated
by a + bP + cr, where the coefficient c < 0, and
IC is a linear decreasing function (b+ 2cP). This
phenomenon is explained by the characteristics of a
CC unit in such a way that the higher the output is,
the better the efficiency will be.

Bakirtzis et al [3] proposed the Genetic algorithm to
solving ED problem without convexity restrictions
on the generator cost functions with valve point
loading. The proposed method outperformed the
dynamic programming in terms of computing times
for the generating units ranging from 9 to 72. But the
success rate to the optimal solution was still only
40% for the 72 generating unit system.

Wong et al [4] proposed the Genetic/Simulated-
annealing approaches to ED problem. The algorithm
was developed based on the combination of the
incremental genetic-algorithm approach and the
simulated-annealing technique. It was shown to be
computationally faster than the earlier simulated
annealing based method on a 13 generator practical
system.

Piecewise linear cost unctions or a CC unit: To obtain
extreme accuracy, instead of using only one
quadratic equation to represent the cost function of a
CC unit, several piecewise linear functions are
employed to represent cost functions for each mode
of the closed cycle operation. The piecewise linear
cost functions and their decreasing staircase IC
functions of one of the closed cycle modes are as
follows.

Ci(PJ = ail + bil Pi. Pi,mill oS' Pi < PUn/, (I a)
= aiZ + biz Pi, PUnt oS' Pi oS' pi,m.." (I b)

lCi(PJ = bi}. Pi,min oS' Pi < Pu"" (2a)
= biz, PUn/ oS' Pi oS' Pi,nra" (2b)

where bil > biz >0,

Sheble et al [5,6] proposed the Genetic algorithm
(GA) and refined Genetic algorithm (RGA) to
solving ED with valve J:oint loading. Several
techniques were explored to enhance the efficiency
and accuracy such as mutation prediction, elitism,
interval approximation and penalty factors. Test
results however were shown on a very small size
three-bus system.

The organization of the paper is as follows. The ED
problem formulation is introduced in Section 2.
Section 3 describes the SGA and MGA. The
experimental results on a five unit system are given
in Section 4. Conclusion is given in the last section.

Chen et al [7] proposed the large-scale ED by
gcnetic algorithm with a normalized lambda
encoding method. Thc nctwork losses. ramp rate
constraints. and prohibited zone were also taken into
account. n,e proposed GA was tested on the system
si7-cs ranging from 5 to 40 units. Even though this
cncoding scheme is practical tor large scale
implemcntation, its application is restricted to
monotonically increasing lC functions only.

2. Economic Dispatch Formulation

2.1 Basic Economic Dispatch
Formulation

The conventional ED problem is to minimize the
total cost function. The problem is fonnulated as:In this pap~r. a Micro Genetic algorithm (MGA) to

solving th~ ED with linear decreasing IC and



N
Minimize CT = .LCi (Pi(t»),

1=1

N (8)
L p;(t) = Pn(t) + PL(I:(t),...,PN(t)),
i-I

P;,/OI.(t) oS" P/(t) oS"Pi,high(t), j =1, ..., N.

Subject to:

Where,
;./(I,.{t) = the possible lowest power output of the

ith unit at time t (Max(P;.m;n.. P; (t-l) -

DR;»,
P;,h;gh(t)= the possible highest power output of the

ith unit at time t (Min{P;,max.P; (t-l) +
URi»,

In this paper, the total power loss is neglected, thus
PL(Pj,(t)...,PNft)) = O.

3. Genetic Algorithms
2.2 Economic Dispatch Formulation with

Ramp Rate Limits
Genetic algorithm (GA) is essentially a searching
method based on the concept of natural selection
and natural genetics. GA searches on encoded bit

strings (usually binary representations) called
individuals rather than the real data points in
solution space. GA has the ability to solve non-
smooth, non-continuous, and non-differentiable cost
functions which is not possible to obtain the optimal
solution by a classical Lagrange method. GA uses
the objective function to evaluate the performance,
not its derivatives or auxiliary equations; and it has
ability to exploit prior knowledge from previous
solution guess to increase the performance of future
solutions. Furthermore, GA exploits probability
transition rules rather than deterministic rules (8].

Ramp rate of generating units are due to the fact that
CC generating outputs can be not adjusted
instantaneously. Therefore, to reflect the actual
operating process, ED problem should include the
ramp rate limits to ensure the feasibility of the
solutions.
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Figure 1. Two Possible Situations of On-line i/h Unit
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As shown in Figure I, the inequality constraints of
ramp rate limits are given as:
I. if the i/h generation unit output increases (see

Figure la)
P;(I) -P;(I-I) -S"UR; (6)

2. if the i/h generation unit output decreases (see

Figure Ib)
P; (I-I) -P; (I) -S" DR; (7)

Where UR; and DR; are up ramp and down ramp
limits of the i/h unit which are in the units of
MW/hr. In practice, DR; is greater than URj.
Combining equations (3), (4), (5), (6) and (7), the
constrained ED problem fonnulation becomes:

In this paper, we shall use the Simple Genetic

algorithm (SGA) developed by Goldberg [8] to
solve the ED problem for comparison. The outputs
of the N generating units have to satisfy the power
balance constraint, operating limit constraints, and
ramp rate constraints. For arbitrary free unit outputs
Pi, pi,/",v(l) oS' /';(1) oS' Pi.h;Kh(I), i =/,...,N-/, it is
assumed that the Nth reference unit power output is

N-I
P N (t) = p/)(t) -L p;(t) (9)

;=\
constrained by the power balance equation as:

3. J. J Enc()dinj!; and Decoding



In this paper, concatenated and embedded encoding
methods are explored. individual, has UR1 and DR1 as 50 and 80 MW/hr

respectively and suppose P1(t-l) is 230 MW, P1,min
=100, and P1,max= 250. Then

P1,I'J",(t) = Max(1 00. 230-80) = 150MW,
PI,hi:$h(t) = Min(250.230+50) = 250 MW,

B1 = (2 *0)+ (T*I)+ (27*1)+ (26*1)+ (25*1)+

(2~*1)+ (23*1)+ (22*1)+ (21*0)+ (2°*1) = 509.
Therefore, PI (t) = 150 + [509*(250 -150)/(210 -I)]
= 199.76 MW. In this paper, each free unit is

represented by 15 bits. The more the number of bits,
the higher the resolution.

Unit 1 Unit 2 Unit 3
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SGA randomly generates initial NP (a specified
population size) string individuals. For each
generation (or iteration), SGA performs four basic
operations: fitness function evaluation,
reproduction, crossover, and mutation.

3.1.2 Fitness Function EvaluationFigure 2. Two Different Encoding Schemes

The perfonnance in finding optimum solution of
SGA is mainly related to the highest single fitness
value. The fitness function including the power
balance constraint ofthejth individual is:

As shown in Figure 2, each unit output of N- J free
units is encoded in a binary based string normalized
over its operating range. The concatenated encoding
method stacks each unit's normalized string in series
with each other to constitute the string individual.
Each unit's string structure is assigned by the same
number of n bits. On the other hand, the embedded
encoding method employs the same binary system
and encoding as the concatenated one. The only
difference is that the assigned bit structures of each
unit string are embedded within each other
throughout the individual. Each individual consists
of a series of smaller string structures (3 instead of
10). For both methods, a string individual has n(N-J)
bits.

Jj =O.5/Cstj+O.5/Pow;,j=/, NP (II)

Where,

POWj
Cst.

.J

P{(t)

Costmin

k

=/+ ().;i=I.NP!(I)- P1,(t))]/P/J(I).
=/+ k*(C1(P!(t),..,pJ(t))-Costm;"J".
= real power output of the ith unit of the jth

individual at time t,
= minimum total fuel cost at Pi,mi,.. i=/...,N

(baht),
= a constant value.

Fcr a concatenated encoding example, three
generating unit power outputs are encoded in a 30
bit string individual as:

011111110110110110110100011011
To obtain the actual generating power output of each
unit tor fitness function evaluation to be discussed,
we need to decode each of 10 bit string to the
decimal value by,

P;(t) = P;,I./II(t)+ [8;* (P;.hi)ih(t)- p;./tlll.(t))/(2"

Where.
8; = decimal integer value of converted

binary string of the ith unit,
= number of bits representing each unit

output.

I)] (10)

The fitness function evaluates a power balance
difference and a total fuel cost difference. By
experiment, k = 0.00 I is used to scale do\\'n the total
fuel cost difference squared component. Otherwise,
the cost difference squared component will
dominate the power balance difference squared over
the total load demand component. After decoding
the jth individual to [p/(t) P,y.(t)] and
substituting in Eq. (9),
if pJ(t) < PN.it,..,(t), pJ(t)=PN.it,...(t}, and
if pJ(t) > PN,hi/:h(t), pJ(t)=PN,hi,-:h(t).
We use [p/(t)...,pJ(t)] to evaluate the fitness value
in Eq. (II) even though the power balance may not
be satisfied. By using Eq. (II), the fitness \'alue is
ensured to be in the range of 0 to I.

3.1.3 ReproductionFor exrunple. the first generating unit power output.
encoded by the first ten bits of the binary string



This reproduction method is based on the biased
roulette wheel or "survival of the fittest" aspect [8].
The bigger the string individual fitness value, the
higher the probability to have copies of them in the
mating pool. For a population size NP, a
reproduction probability and cumulative
reproduction probability of the ith string individual
with fitness value.li, are

varying from 0% to 50% of the total number of bits
in a mask.

The unifonn crossover generates new offspring
individuals to participate in genetic process.
Without crossover, the fittest individual is obtained
from the initial random population. However, were
every individual to cross with another one after
reproduction (crossover probability = 1.0), then we
might lose many superior individuals. It has been
shown in [10] that the convergence rate of unifonn
crossover is faster than the two-point crossover.
Hence, the unifonn crossover is used in this paper.

j
= LPrep,ko

k=1

(12)

Where j =l NP. The selected parents' string
individuals to be copied to the mating pool are those
having cumulative PrepJ just above the real number
randomized between 0 and I.

3.1.5 Mutation3.1.4 Crossover
Mutation is a process of flipping bits in a randomly
chosen offspring string individual at random
positions after performing crossover. In other words,
it is a toggle from 0 to I or vice versa in a binary
based system. Mutation is designed to give the
offspring individual characteristics which do not
exist in parent individuals. The rate of mutation is
much lower than that of crossover since it is
considered to be a secondary role. It is about 0.001
to 0.01 depending upon the types of applications.
For instance, if we have offspring individual bits
mutated at positions 2,15, and 21, then

Crossover is a process of exchanging bits between
two string individuals. In particular, two individuals
from the mating pool are randomly selected as
parent individuals based on the biased roulette
wheel. Then arbitrary positions on both individuals
are chosen for crossing locations, where the
exchanges of bits take place. A crossing mask is
employed to determine the crossing locations. Two
parent individuals will exchange their bits at every
location where the corresponding position in the
mask is one. As an example, it is assumed that two
30 bit string parent individuals are selected for two-
point and uniform crossover as follows:

Position
Parentl:
Parent2: IJ.OJ.J.J.J.OOJ.O J.J.J.J.OOJ.J.OO J.0J.00J.10011

position:
Mask:
Offspringl:

Offspringl:

For the two-point crossover, the mask comprises one
set of l's bits surrounded by two sets of O's bits [9].
Two crossing locations are arbitrarily selected from
bit positions 2 to 30. If the crossing locations are 5
and 23, we will have

Note the mutation should be employed with caution
since the high mutation rate will deteriorate the
search performance.

3.2 Micro Genetic Algorithm

Position: 1234567890 1234567890 1234567890
Mask: 0000111111 1111111111 1110000000
Offspring1: 011 110010 1111001100 10 011011
Offspring2: 11 11101 1011011011 01op0110011

Micro GA, one of the variation of the conventional
SGA, was originally proposed by Krishnakumar
[II]. In addition to performing four basic
operations, M(.A uses the elitism principle and
checks the convergence of population at the end of
each generation. Since any of the four basic
operations do not guarantee that the new population
string individuals are always better. Elitism
guarantees that the best string individual survives. If
the best individual in the current generation is worse

For the unirorm crossover, the mask comprises a
string or t's and D's bit randomly distributed along
its length [10). The number or exchanged bits
depends on the number or "s bits in the mask

position: 1234567890 1234567890 1234567890

1234567890 1234567890 1234567890
0111111101 1011011011 0100011011

1234567890

0100000000
0111110010

J.

001.1110010

1234567890

0000100000
1111001100

.I.

1111@;JJ1100

1234567890

1000000000
1010011011
~
(gO10011011



Table I. Input-Output Characteristic of Rayong CC Units

Table 2. Input-Output Characteristic of Khanom CC Units

than the previous generation, the best individual of
previous generation will be randomly replaced to any
individual of the current generation that would be
parent individuals of the next generation.
Consequently, MGA with elitism guarantees that at
least the best individual exists until the last generation.

respectively. The low and high operating limits,
coefficients of input-output functions, ramp rates, as
well as the gas fuel costs of RY and KN units are
shown in Tables I and 2, respectively. It is noted that
an input-output function is given as A; + R;P; +C;p(
and the cost function is calculated by multiplying the
input-output function by the fuel cost.

MGA checks the convergence after applying elitism.
If the best string individual at each generation, which
has the highest fitness value, has the total number of
bit difference from the other individuals less than 5%
of the total number of bits in the population size (nx

(N-J)xNP), that population is converged. Then MGA
needs to copy the best individual to the next
generation whereas the other individuals are all re-
initialized [II].

Table 3. Parameter Selection ofSGA and MGA

Method

I 

Pop, ICrossoverI Mutation IMaxImUm I ' b b I, .I 
Size ~, pro, gen, 1m It

SGA with
concatenated

(SGAC)

90 0.5 0.02 1500

SGA with
embedded

(SGAE)

55- 0.45 0.01 1500

In general, MGA perfom1s well on a very small size of
population. By experiment, the mutation and uniform
crossover probability are 0.00 and 0.50 respectively.
The attractive aspect of MGA is that it requires a
relatively smaller population size than the SGA which
results in less computation time. Moreover, once the
population is converged. MGA tries to explore another
set of solutions which would result in a higher chance
to bail the solutions out of the local optimal solutions.

0MGA with
concatenated

(MGAC)

5 0.5 500

MGA with
embedded
(MGAE)

5 0.5 0 500

According to our experiments, the parameters selection
which are suitable for our ED problem are shown in
Table 3. These parameters include the population size,
crossover probability, mutation probability, and
maximum generation limits. SGA and MGA with
concatenated and embedded encoding methods are
investigated and compared. Note SGA retains the best
individual for each generation and its solution is
selected from the best individuals of all generations.

4. Experimental Results

For cost functions data. four units of Rayong (RY) CC
and one unit of Khanom (KN) CC power plants [2] are
used as benchmark data because their IC functions are
linear decreasing and decreasing staircase functions,



Computer programs for the SGA and MGA were
developed in Pascal programming language. The
experimental results obtained for increasing load
demands from 776 to 1728 MW are compared to the
unconstrained BF, MOL, and equal-lambda based
Newton results. The load demand step is 10 MW. The
ramp rate constraints in MW /hr are taken into account
for each step.

processes of both methods continue until they reach
their maximum generation limits. It should be observed
that the unconstrained BF does not take the ramp rate
constraints into account, thereby its solution is not
guaranteed to be feasible. But we use its results for
benchmarking. Note the equal-lambda based Newton
has the highest fuel cost since the equal lambda
principle is not applicable for linear decreasing and
staircase IC functions [2].

Table 4. Comparisons olTotal Fuel Costs

5. Conclusions

A Micro Genetic algorithm (MGA) method to solving
the ramp rate constrained economic dispatch problem
with linear decreasing IC and staircase IC functions is
proposed. The MGA outperforms SGA in terms of
lower total fuel costs and faster computing times since
it has a higher chance to obtain the optimal solution
with a relatively smaller size of population. It is shown
that the total fuel cost of MGA is less than MOL,
leading to substantial fuel cost savings. Real-time
implementation of ED for EGA T CC units with linear
decreasing and staircase IC functions by MGA is
potentially viable.

As shown in Table 4, the percentage of total fuel cost
difference of all load demand steps of MGA with
concatenated and embedded encoding methods are
0.1756% and 0.1835% higher than the unconstrained
BF whereas SGA with concatenated and embedded
encoding methods are 0.2295% and 0.2301% higher.
MGA with concatenated encoding method has a lower
fuel cost than the MOL based on the unit lambda
values at P min and P,nax re;.ults in [2] by 0.2653% and
0.3894%, respectively. This improvement of ED
program would therefore result in substantial fuel cost

savings.
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