INCORPOLATION OF TONE MODELS INTO SPEECH RECOGNITION

Dr.Nuttakorn Thubthong

Department of Physics, Faculty of Science, Chulalongkorn University

Mr.Prakasith Kayasith Asistive Technology Center, NECTEC

Adenda

Background
Speech corpora
Baseline system
Tone modeling
Conclusion

What is Dysarthria?

 A neurological motor speech impairment
 characterised by slow, weak, imprecise and/or uncoordinated movements of the speech musculature.

- Speech is often difficult to understand (unintelligible) and variable (inconsistent)
- Frequently associated with other physical disabilities
- **170/100 000**

Intelligibility and Consistency

Normal' speech will be almost 100% understandable to listener (*intelligibility*) and with few articulatory differences over time (*consistency*).

 'Severe' dysarthric speech may be completely unintelligible to a Unfamiliar Communication Partner and then shows high variability (*inconsistency*) of speech.

But somehow, for the same speech, to a Familiar Communication Partner it shows some *consistency of key elements* which will make it more *intelligible* to the familiar listener.

Benefits of ASR for dysarthria

- to convert human speech signals into effective actions (ECU)
- to use ASR as an interface to type or send signals to a speech synthesizer that would translate difficult to understand dysarthric speech into a more recognizable form

 ASR is concerned with *consistency of key* elements

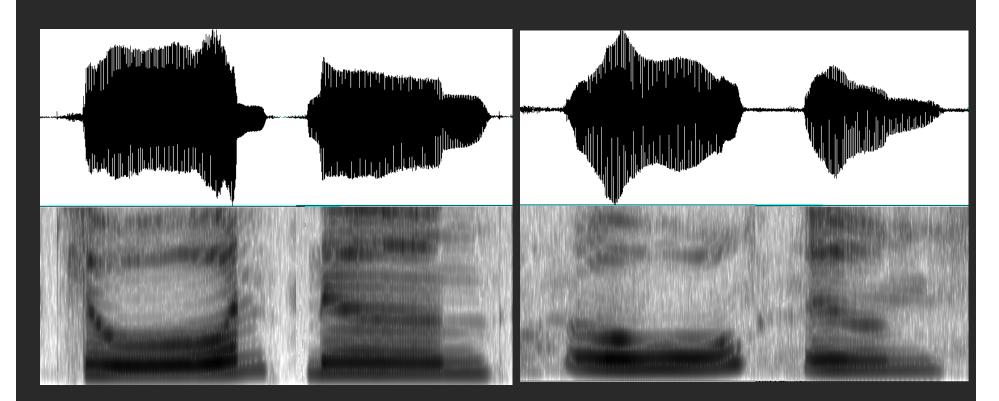
Commercial SRS Tests

	Preselected	Novel
Microsoft Dictation	52.23%	52.93%
(Microsoft Corporation)	(87.96%)	(78.85%)
Dragon Naturally Speaking	67.40%	61.96%
3.0	(92.04%)	(87.72%)
(Dragon Systems Inc.)		
VoicePad Platinum	46.99%	56.75%
(Kurzweil Education	(85.82%)	(82.36%)
Systems Inc.)		

Consonant Error

Normal 🍕

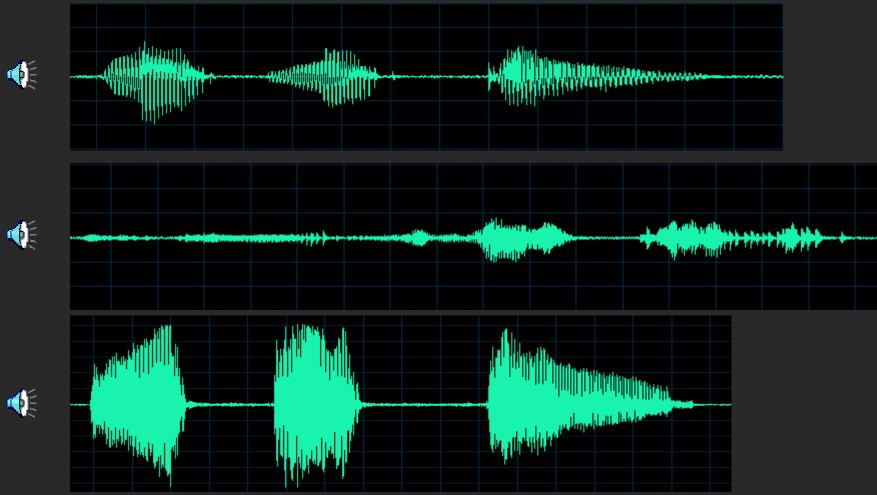
Dysarthria 🍕



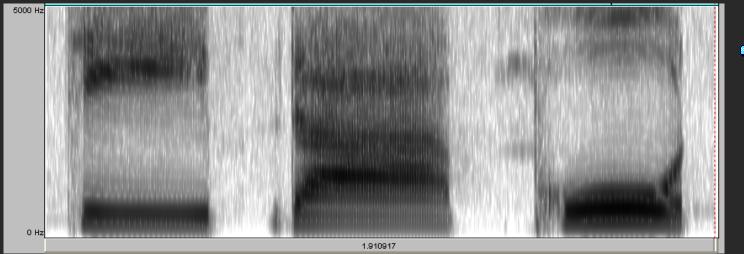
/suung4 nvng1/

/suung4 nvng1/ 7

Word "มะละกอ" produced by One Normal and two Dysarthria speakers

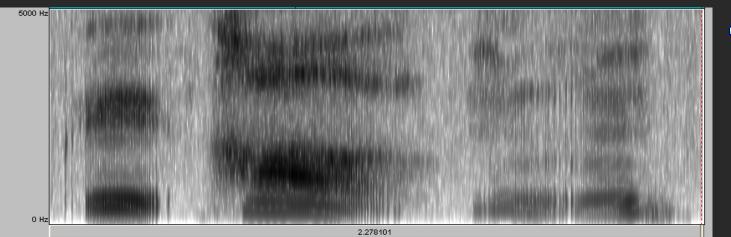


Spectrogram

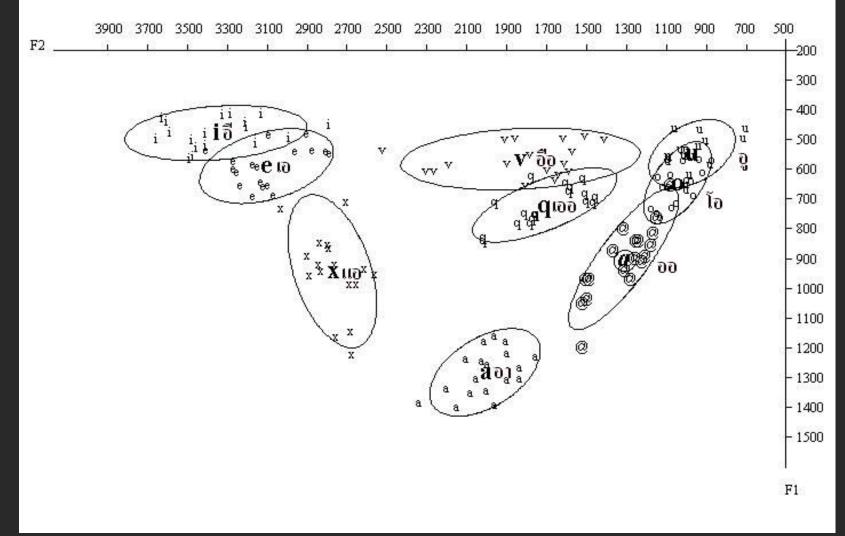


📢 Normal

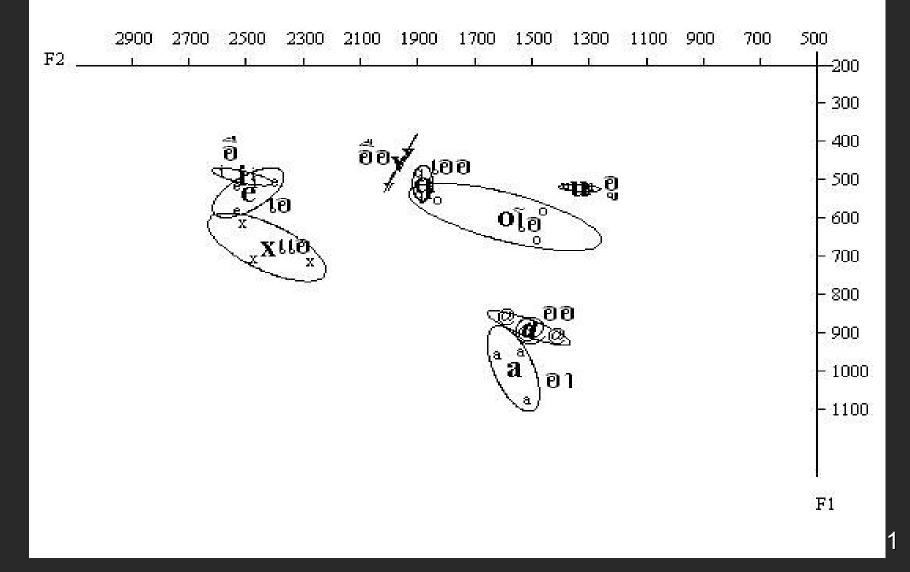
\ciip1 daap1 phuut2\



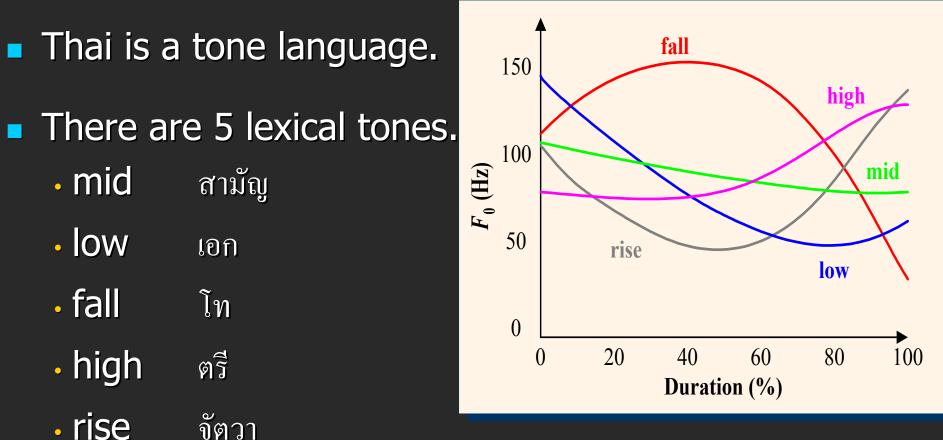
Vowel areas of six normal speakers



Vowel areas of one dysarthria speaker

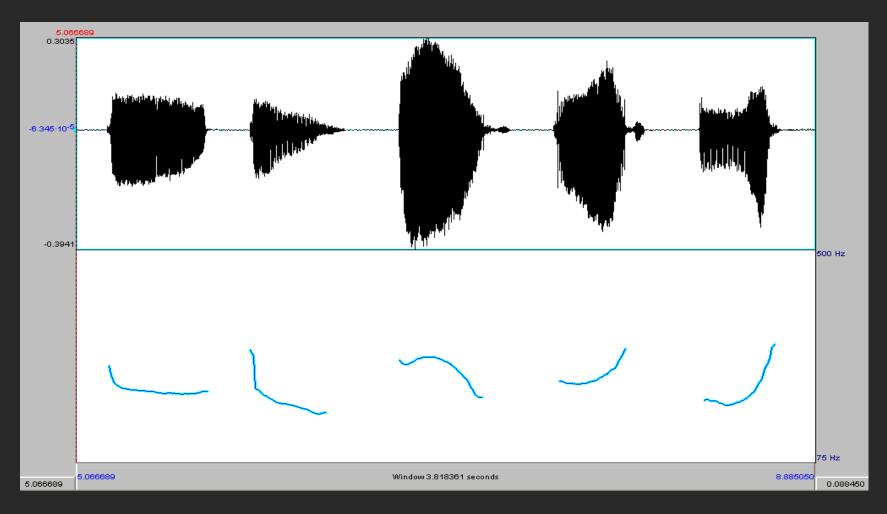


Thai Tones



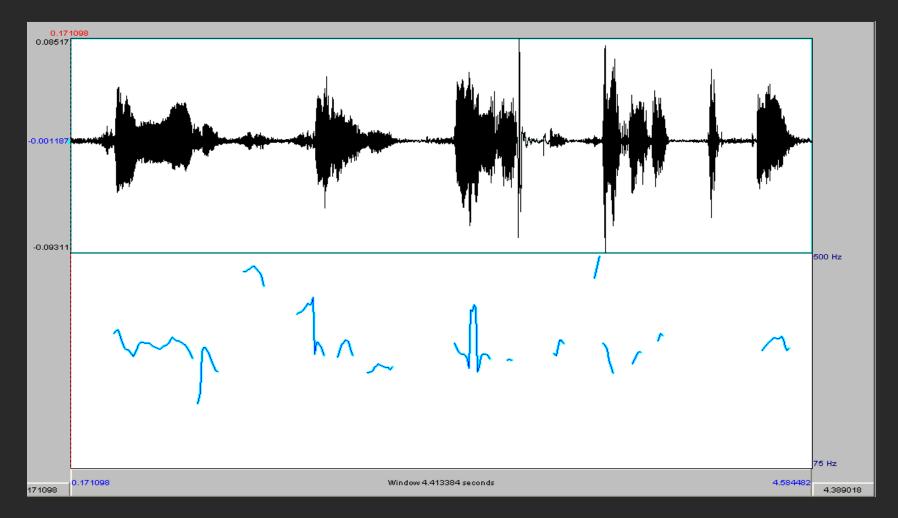
The identification of a Thai tone relies on the shape of *fundamental frequency* (F_0) contour.

F₀ of Normal Speaker



/paa0 paa1 paa2 paa3 paa4/ 🐗

*F*₀ of Dysarthric Speaker



/paa0 paa1 paa2 paa3 paa4/ 🐗

Speech Corpora

Three speech corpora:
Digits: 10 words
Adverbs: 10 words
Verbs: 16 words

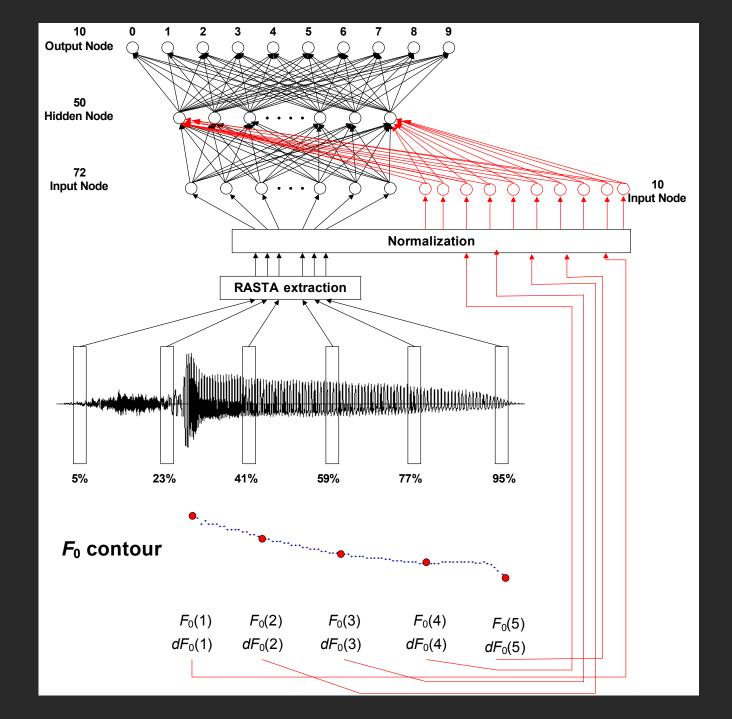
- 4 normal speakers (6 8 years)
- 4 dysarthric speakers (7 13 years)
- read all three sets for five trials
- 16-bit, 16 kHz sampling rate.

Baseline system

- 12th RASTA, 25 ms frame size
- Three-layer Feedforward Neural Network
 - 180 input nodes
 - 50-50-100 hidden nodes for digit, adverb and verb sets
 - 10-10-16 for digit, adverb and verb sets
- 5-Fold Cross-Validation
- Trained by the error back-propagation algorithm

Tone Models

- Using Average Magnitude Different Function (AMDF) algorithm
- Normalized by transforming the Hertz values to a z-score using mean and standard deviation of each speaker
- Smoothed using the 3rd order polynomial regression
- Use five F0's and their derivatives at 0, 25, 50, 75, and 100% as tone models



Experiment results for normal speaker

	DIGIT (10)		ADVERB (10)		VERB (16)	
	Baseline	+TONE	Baseline	+TONE	Baseline	+TONE
M1	100.0	100.0	100.0	100.0	98.7	100.0
M2	100.0	100.0	100.0	100.0	97.5	98.7
F1	96.0	98.0	98.0	100.0	97.5	98.7
F2	100.0	100.0	98.0	98.0	95.0	95.0
Avg	99.0	99.5	99.0	99.5	97.2	98.1

Experiment results for dysarthric speaker

	DIGIT (10)		ADVERB (10)		VERB (16)	
	Baseline	+TONE	Baseline	+TONE	Baseline	+TONE
DM1	76.0	80.0	80.0	84.0	68.7	71.2
DM2	92.0	94.0	96.0	98.0	92.5	93.7
DF1	98.0	100.0	94.0	94.0	88.7	92.5
DF2	80.0	86.0	80.0	80.0	-	-
Avg	86.5	90.0	87.5	89.0	83.3	85.8

Conclusion

- ASR is concerned with consistency of key elements
- We demonstrated that incorporating tone models improved the recognition performance for dysarthric speakers.
- Other prosodic information such as duration and stress modeling will be investigated in our future work.