Photon Sensing and Imaging Laboratory (PhoSIL)

Electronics department, Faculty of Engineering, KMITL, Bangkok, Thailand, 10520

Recent developments of a hybrid photonic-ultrasonic tomography for biomedical applications

Dr. Siridech Boonsang,

ดร. ศิริเดช บุญแสง

Dr. Chuchart Pintavirooj

ดร. ชูชาติ ปิณฑวิรุจน์

Outline

Photo-Acoustic Tomography (PAT)

Acousto-Optic Tomography (AOT)

Photo-Acoustic Tomography

Terminology

- Laser ultrasound
- Photoacoustic (UK & Europe)
 - Pulse photoacoustic
 - Photoacoustic spectroscopy
- Optoacoustic (US)
- Thermoacoustic (Microwave to ultrasound)

Historical milestones

- E.G. Bell firstly observed the conversion process from light to sound.
- The first ultrasonic signals generated by modern laser system (Ruby laser) (Carome et al. 1964)
- Theoretical and experimental investigation of laser-generated ultrasonic signals (Scruby et al. 1980, Dewhurst et al. 1982, Hutchins et al. 1989)
- The first demonstration of biomedical applications of laser-generated ultrasound (Chen et al. 1993)
- The first in vivo functional brain image constructed by photoacoustic system (Wang et al. 2004)

Photophone 1880

Taken from "Alexander Graham Bell's Photophone" by D.L. Hutt, K.J. Snell, and P.A. Belanger. Optics & Photonics News June 1993.

Potential applications

- Intra-arterial imaging and therapy (*Chen et al. 1993*)
- Monitoring of glucose level (Quan et al. 1993)
- Monitoring of cerebral blood oxygenation (Esenaliev et al. 2002)
- Monitoring an interface tissue layer within an eye (Payne et al. 2000)
- A diagnostic system for breast cancer (Esenaliev et al. 1999)
- Functional imaging of brain activities (Wang et al. 2004)

Mechanism of photoacoustic generation

- Dielectric breakdown (Laser intensities >10¹⁰ W.cm⁻²)
- Vaporization (conversion efficiency 1%)
- Material ablation
- Thermoelastic process
- Electrostriction
- Irradiation pressure

Thermoelastic process

Laser ultrasonic system : UMIST, UK

Sample

Laser ultrasound system

Typical photoacoustic signals

Backward/reflection mode

Forward/transmission mode

Examination of human aorta

Normal aorta

Atheromatous aorta

Beard et al. 1997

Parameters	Value from reference sources	Estimated value	
		Backward detection mode	Forward detection mode
Optical absorption coefficient, α_{ab} (cm ⁻¹)	21.6 ± 1^{a}	23.72	26.1
Effective piston diameter of photoacoustic source, 2 <i>a</i> (mm)	_	1.78	1.41
Effective piston diameter of ultrasonic receiver, $2b$ (mm)	$1.0\pm0.05^{\mathrm{b}}$	0.99	1.01
Ultrasonic wave (longitudinal) velocity of glass, c_{ab} (m s ⁻¹)	$5640 \pm 5^{\circ}$	5636.46	5632.22
Laser pulse duration, τ_L (ns)	40 ± 5	36	60.8

Boonsang et al. 2004

Outline diagram of bovine eye together with Photoacoustic signal

Dewhurst et al.

- A. Water-cornea interface
- B. Cornea-aqueous humor interface
- c. Aqueous humor-lens interface

Dewhurst et al.

B-Mode image

Improved by Time domain Synthetic aperture Improved by Frequency domain Synthetic aperture

Boonsang et al. 2003

Electromagnetic acoustic transducer (EMAT)

(a)

Distance from the center of evans blue tube / mm

Without blood vessel

With blood vessel

Laser ultrasound system : Texas A&M

Laser ultrasound system : Texas A&M

Breast cancer image

Ultrasound

Oraesky et al.

Acousto-Optic tomography

Frequency swept AOT

Levequet-Fort et al. 2001

Conclusions

- Hybrid photonic-ultrasonic tomographies combine the strength of optical and ultrasonic tomographies.
- Higher contrast image than ultrasonic tomography, Better resolution than optical tomography.
- Cost effectiveness (a lot lower than MRI)
- Non-Ionization unlike X-Ray CT
- However, they are at early stage of development.

Acknowledgements

- Professor Richard J. Dewhurst, University of Manchester, UK.
- Dr. Greg Gondek and Dr. S. Kaewpirom
- Mr. Ben Dutton and Mr. Jasman Zainal
- Royal Thai Government Studentship (2000-2004)

