

Robust Motion Control of Industrial Robot Considering Two-inertia System Based on CDM Method and Resonance Ratio Control

Present by: Chowarit Mitsantisuk National Electronic and Computer Technology Center RDE8 : Automation and Manufacturing LAB

What's need for industrial robot manipulators

NAC2005 NSTDA Annual Conference s&T in Thailand : Towards the Molecular Economy

1.Vibration Suppression

2. Improve speed response

3. Reduce the state error of position control

Outline of conventional control method

Outline of proposed control method

Three Degree of Freedom of Robot Manipulator

Figure 1:Description of the position and orientation of the end-effecter frame

Two-Inertia Model

Advantages

Positioning accuracy and repeatability

Not back-drivable

Zero-Backlash

High efficiency

Motor in Motion Simulation

Two-Inertia Model

NSTDA Annual Conference S&T in Thailand : Towards the Molecular Economy

Resonance ratio control and PI Speed Control

The resonance frequency of the new system is changed to

The resonance ratio can be controlled by K_R

$$H = \frac{\omega_{\rm r}}{\omega_{\rm a}} = \sqrt{1 + \frac{J_{\rm L}K_{\rm R}}{J_{\rm MO}Rgn^2}}$$

Optimal Resonance Ratio

Determined by CDM method

Resonance ratio control and PI Speed Control

Resonance ratio control and PI Speed Control

Manabe's Model Polynomial

$$\tau = \frac{a_1}{a_0} = \frac{K_P}{K_I} = \frac{1}{\beta} \qquad \gamma_1 = \frac{a_1^2}{a_0 a_2} = 2.5, \quad \gamma_2 = \frac{a_2^2}{a_1 a_3} = 2, \quad \gamma_3 = \frac{a_3^2}{a_2 a_4} = 2$$

 K_P, K_P and K_R Determined by CDM method

Feedforward Compensator

Feedforward Controller

Eliminate effects of dominant poles $-\alpha_1, -\alpha_2$ High Speed Response

D-PD Position Control

D-PD Position Control

Manabe's Model Polynomial

$$\tau = \frac{aa_1}{aa_0} = \frac{K_P}{K_I} = \frac{1}{\beta}$$
 Equivalent time constant
$$\gamma_1 = \frac{aa_1^2}{aa_0aa_2} = 2.5$$
 Stability index

$$K_{PD} and K_{PP} Determined by CDM method$$

$$\begin{bmatrix} K_{PD} \\ K_{add} K_{S} \end{bmatrix} = \begin{bmatrix} K_{add} K_{S} & K_{add} D_{L} - \frac{K_{S} K_{add}}{\beta} \\ K_{add} K_{S} - K_{add} D_{L} \beta \gamma_{1} & K_{add} D_{L} - K_{add} J_{L} \beta \gamma_{1} \end{bmatrix}^{-1} \begin{bmatrix} -\alpha_{3} \alpha_{4} \alpha_{5} J_{L} \\ \alpha_{3} \alpha_{4} J_{L} \beta \gamma_{1} + \alpha_{4} \alpha_{5} J_{L} \beta \gamma_{1} + \alpha_{3} \alpha_{5} J_{L} \beta \gamma_{1} - \alpha_{3} \alpha_{4} \alpha_{5} J_{L} \end{bmatrix}$$

$$F_{PD} \text{ Determined by arbitrary zero } -z_1$$

$$F_{pd} = \frac{K_{pp}}{z_1}$$

Simulation Results

The three-dimensional circle trajectory path which rotating angle from X-axis 45 ° and from Z-axis 45 °

Simulation Results

Controller	Maximum Error	Area of Error
Resonance Ratio Control, PI &FF Speed	0.42 mm	<u>0.0010 m-s</u>
Control and D-PD Position Control		
PI Speed Control and P Position Control	1.10mm	0.0023 m-s

NAC2005 NSTDA Annual Conference S&T in Thailand : Towards the Molecular Economy

1.Vibration Suppression : Resonance Ratio Control and PI Speed Controller

2. Improve speed response: Feedforward control

3. Reduce the state error of position control : D-PD Position Controller

4. All of this controller designed by CDM method, considering from stability index and rise time.

Dynamic of Robot Manipulator

 $D(\theta)\ddot{\theta} + h(\theta, \dot{\theta}) + C(\theta) + F(\theta, \dot{\theta})$ $\tau =$

Acceleration-relate symmetric matrix term

Nonlinear Coriolis and centrifugal force vector term

Gravity loading force vector term

Coulomb and viscous friction term

