

www.5axis-thai.com

#### Five Algorithms to Optimize and Correct the Tool Path of the Five-Axis Milling Machine

S.S. Makhanov and M. Munlin Department of Information Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12121, Thailand makhanov@siit.tu.ac.th

Two Royal Golden Jubilee Scholarships of the Thailand Research Fund are available for Thai Master of Ph.D. students

#### Milling Machines Maho600E and HERMLE







#### **5-Axis Machining**







#### **General Objective: Tool path Optimization. A Software Prototype**

5 Axis Thai **Tool path Optimizer** Criteria: kinematics error, scallop height, machining strip Errors Adaptive tool paths(grids, space filling curves, angle optimization) Gouging avoidance, Collision detection Tool path NURBS NC Modeling Inverse (IGES) program kinematics kernel CAD Error estimator 1 Error estimator 2 Solid model of with visualization and visualization the machine Tool path Tool tip error Material removal Visual collision Scallop height integrated with detection Gouging the UG Machining strip Virtual Milling Machine

#### **Optimization Problem**



Given a surface find a set of tool positions and orientations such that the surface is cut with max accuracy for minimum time

#### Idea 1. Curvilinear grids









#### A very high density of the CL-points





#### Adaptation to the boundary & pockets





Robot with sad face

Oister

#### A complicated boundary & a pocket



11

#### Workpeices produced by means of adaptive tool path





Concave-convex surface, plastic

Parabolic surface, wood



Concave-convex Bezier

surface, steel



Concave-convex

surface, wood



Complex boundary,

wood



Internal boundary,

12

wood.

#### Accuracy and roughness of the machined surfaces

| CL     | Av. step, | Error       | Roughness      | Roughness  |
|--------|-----------|-------------|----------------|------------|
| points | mm        | decrease,   | (conventional) | (adaptive) |
|        |           | %/mm        | μm             | μm         |
| 100    | 3.60      | 34 / 0.2600 | *              | *          |
| 400    | 1.80      | 41 / 0.0930 | *              | *          |
| 900    | 1.20      | 34 / 0.0580 | 34.8           | 17.3       |
| 1600   | 0.90      | 36/0.0410   | 14.3           | 6.6        |
| 3600   | 0.60      | 32 / 0.0260 | 5.9            | 4.3        |
| 6400   | 0.45      | 40/0.0180   | 2.6            | 2.1        |

#### Idea 2. Space-Filling Curve

• SFC is a continuous mapping of a unit line segment onto the unit square.



## Adaptive Space-Filling Curve Construction

• Overlay two iso-parametric tool paths; one in the v-direction and one in the u-direction.



## Machining strip must cover the entire surface



## Space-Filling Curve Generation



- Generation of space-filling curve is formulated as the Hamiltonian path problem.
- The grid is first covered by small rectangular circuits.

#### Space-Filling Curve Generation



• Any two adjacent circuits merge into a bigger circuit. The cost of merging is defined as:

Cost(A, B) = |s| + |t| - |e| - |f|Where |e| presents the length (distance) of the edge e.

 Define a dual graph G': Each small circuit in G defines a vertex in G' Two edges connecting two small circuits in G define an edge in G'

#### Space-Filling Curve Generation



Minimum Spanning Tree of Dual Graph G' Corresponding Hamiltonian Path In G

- Merging is done by constructing a minimum spanning tree on the dual grid graph
- Tool path is obtained by removing virtual edges (dashed line), if any.

#### **Tool Path Correction**



Example 1



## Example 1 Machining





Cutting without tool path correction

Cutting with tool path corrections



---



#### Efficiency of the SFC tool path

| Tool Dath                             | Total path length (mm) |           |           |
|---------------------------------------|------------------------|-----------|-----------|
|                                       | Example 1              | Example 2 | Example 3 |
| Iso-parametric in the v-<br>direction | 3917.31                | 9397.97   | 7831.70   |
| Iso-parametric in the u-<br>direction | 2648.12                | 9397.97   | 9036.17   |
| SFC tool path                         | 2637.54                | 7955.58   | 6780.84   |

#### Idea 3. Vector Field Clustering

Calculate optimal directions. Find clusters of the optimal directions which "look like" zigzag or spiral







(Fy, -Fx)

f

#### Vector field analysis







#### Example 2

#### Actual machining



Comparison between tool path calculated by the proposed method and by the iso-parametric method

|              |                  | CC path length<br>(mm) | Number of<br>turns |
|--------------|------------------|------------------------|--------------------|
| Vector Field |                  | 18675.45               | 300                |
| Conventional | The <i>u</i> dir | 20255.37               | 296                |
| Method       | The v<br>dir     | 20616.16               | 152                |

#### **Idea 4. Angle Optimization**

NC Program **Current Block** G: G01 X: 78.382 Y: 14.185 Z: -180.251 A: 120.429 B: -49.855 F: 10  $20 \times 20$ Grid: Angles: org(1), opt(2) MWWWW MAMMAN MAN WWW. MAMAN MM B[2] AB AB[2]



#### Around or across the hill?

The first rotary axis



## Rotation angles are not unique





#### The Shortest Path



#### The shortest path for 2 points

Before:

 $a_1 = -1.571, b_1 = -0.896,$  $a_2 = -4.712, b_2 = -1.412.$ After:

$$a'_{2} = a_{2} + \pi, b'_{2} = -\pi - b_{2},$$
  
 $a_{1} = -1.571, b_{1} = -0.896,$   
 $a'_{2} = -1.571, b_{2} = -1.729.$ 



Error Reduction = 98.25%

## Before and after

#### Before optimization



#### After optimization











## Efficiency

| Tool path | No optimization<br>max error(mm) | Optimization<br>max error (mm ) | error decrease<br>(%) | Path length<br>Non-opt/opt(mm) |
|-----------|----------------------------------|---------------------------------|-----------------------|--------------------------------|
| 10 x 20   | 23.862                           | 12.426                          | 47.9                  | 2825.6 / 2255.5                |
| 15 x 20   | 19.300                           | 8.517                           | 55.9                  | 2500.3 / 2123.0                |
| 20 x 20   | 20.228                           | 7.558                           | 62.6                  | 2367.6 / 2101.2                |
| 30 x 20   | 16.253                           | 7.162                           | 56.0                  | 2183.6 / 2038.3                |
| 40 x 20   | 8.711                            | 6.878                           | 21.0                  | 2069.3 / 2020.1                |
| 100 x 20  | 7.395                            | 7.103                           | 4.0                   | 1916.1/ 1911.2                 |
| 130 x 20  | 3.999                            | 3.999                           | 0                     | 1876.49 / 1876.49              |

#### Impeller before and after





#### Idea 5. The error depends the on workpiece initial orientation and the machine setup





#### Least Square Error



$$\varepsilon = \sum_{p=0}^{1} \left| W_{p,p+1}^{D} - W_{p,p+1} \right|^{2} dt,$$
  
=  $\sum_{p=0}^{1} \int_{0}^{1} (x_{p,p+1}^{D} - x_{p,p+1})^{2} + (y_{p,p+1}^{D} - y_{p,p+1})^{2} + (z_{p,p+1}^{D} - z_{p,p+1})^{2} dt.$   
41

## System of nonlinear Equations

- Differentiate the error function with respect to workpiece  $(R_a, R_b, T_{12}),$
- Solved by Newton Method.

The Jacobian matrix for the case  $R_a, R_b, T_{12}$ 



## Example 1 Tool Path



## Example 1 Error



Before optimization

After optimization

## Other machines Similar results

The 1-1 machine

The 0-2 machine



#### Example 2. The 1-1 Machine



#### Example 2. The 1-1 Machine



## We obtained a rigorous mathematical proof that every machine has 6 optimizable variables

| Machine<br>Type    | Workpiece<br>setup                       | Tool      | Machine<br>settings            |
|--------------------|------------------------------------------|-----------|--------------------------------|
| The 2-0<br>machine | $r_a, r_b, T_{12,x}, T_{12,y}, T_{12,z}$ | none      | $T_{23,x}$                     |
| The 1-1<br>machine | $r_a, r_b, T_{12,x}, T_{12,y}$           | $T_{4,z}$ | $T_{34,x}$                     |
| The 0-2<br>machine | $r_a, r_b$                               | $T_{4,z}$ | $T_{23,x}, T_{23,y}, T_{34,y}$ |

# Other parameters are either invariant parameters

(The parameter doesn't affect the tool trajectory. For example: the tool length for the 2-0 machine)  $\frac{\mathrm{d}\varepsilon}{\mathrm{d}v} \equiv 0$ 



#### or dependent variables



## Efficiency

Surface 2





#### Efficiency Surface 1

|                 | mean error (mm) / Reduction |                                 |                                                                    |                                        |
|-----------------|-----------------------------|---------------------------------|--------------------------------------------------------------------|----------------------------------------|
| Machine type    | Before                      | Optimization<br>workpiece setup | Optimization wrt.<br>the workpiece<br>setup and the tool<br>length | Optimization<br>wrt. the entire<br>set |
| The 2-0 machine | 0.5730                      | 0.0179 / 96.88%                 |                                                                    | 0.0176 / 96.92%                        |
| The 1-1 machine | 0.5785                      | 0.0360 / 93.77%                 | 0.0186 / 96.78%                                                    | 0.0186 / 96.78%                        |
| The 0-2 machine | 0.0367                      | 0.0355 / 3.13%                  | 0.0200 / 45.36%                                                    | 0.0179 / 51.11%                        |

## Efficiency Surface 2

|                 | mean error (mm) / Reduction |                                             |                                                                    |                                        |
|-----------------|-----------------------------|---------------------------------------------|--------------------------------------------------------------------|----------------------------------------|
| Machine type    | Before<br>optimizatio<br>n  | Optimization wrt.<br>the workpiece<br>setup | Optimization wrt.<br>the workpiece<br>setup and the tool<br>length | Optimization<br>wrt. the entire<br>set |
| The 2-0 machine | 0.5408                      | 0.1118 / 79.33%                             |                                                                    | 0.1102 / 79.62%                        |
| The 1-1 machine | 0.7092                      | 0.6335 / 10.68%                             | 0.3072 / 56.68%                                                    | 0.3029 / 57.30%                        |
| The 0-2 machine | 0.5561                      | 0.5495 / 1.18%                              | 0.1220 / 78.06%                                                    | 0.1087 / 80.45%                        |

## Efficiency. Point Reduction

|           | # of CC points / Reduction |                                   |  |  |
|-----------|----------------------------|-----------------------------------|--|--|
| Surface   | Before optimization        | Optimization wrt. $r_a$ and $r_b$ |  |  |
| Surface 1 | 3900                       | 1233 / 68.4%                      |  |  |
| Surface 2 | 7925                       | 5544 / 30.0%                      |  |  |

## Machining. The 2-0 machine. Surface 1 Before and After



## Conclusions

- We proposed and analyzed 5 methods to optimize five-axis machining
- 1) Curvilinear grid techniques (30-40%) accuracy increase
- 2) Space filling curve 10-30% tool path length decrease
- 3) Vector field clustering 10-20% tool path length decrease
- 4) The shortest path minimization with regard to the angles up to 90% accuracy increase for rough cut
- 5) The Least square minimization with regard to the initial position, orientation of the workpeice and configuration of the machine up to 90% accuracy increase. 30-60% decrease in the number of points (positions)

#### A New Software for 5-axis Machining, Optimization, Simulation, and Verification Research Team

