Enhanced Mechanism of Automated IPv6 Site Renumbering

Present by

Miss Kuljaree Tantayakul

Centre for Network Research Department of Computer Engineering Faculty of Engineering Prince of Songkla University

Outline

- Introduction
 - Problem and Motivation
 - Neighbor Discovery Protocol
 - Autoconfiguration Protocol
 - Router Renumbering Protocol
- Implementation
- Experimental Setup
- Experimental Results
- Conclusions

- IPv6 is a new version of Internet protocol.
- Repair limitation of IP address problem with 128 bit address.
- The small routing table of router.
- Security
- Renumbering

Problem and Motivation

- Changing the global network address
- Changing ISP
- Large the network topology

How Renumbering get done

- Renumbering include 4 part
 Host
 - Neighbor Discovery and Autoconfiguration
 Protocol

Router

Router Renumbering Protocol

DNS Server

- Dynamic DNS Update
- **TCP wrapper and Firewall**

Neighbor Discovery Protocol (ND)

- IPv6 node which share the same link physical medium (link) use Neighbor Discovery
 - Determine link layer address of their neighbor
 - Find router

ICMPv6 message concern renumbering

- Router Solicitation (RS)
- Router Advertisement (RA)

Neighbor Discovery Protocol (cont.)

Router Solicitation Message (RS)

The router solicitation message is transmitted by host to router to generate router advertisement message.

Neighbor Discovery Protocol (cont.)

Router Advertisement Message (RA)

periodic advertisement (of availability of a router) which contain

- list of prefix use on the link
- a possible value for Max Hop limit
- value MTU

Autoconfiguration Protocol

- A host generates own address using two elements of information
 - The host part is called interface identifier (MAC address)
 - The router part come from address prefix

Router Renumbering Protocol

- Router Renumbering protocol used to update the routers.
- Combines with Autoconfiguration and Neighbor Discovery

Format of router renumbering command

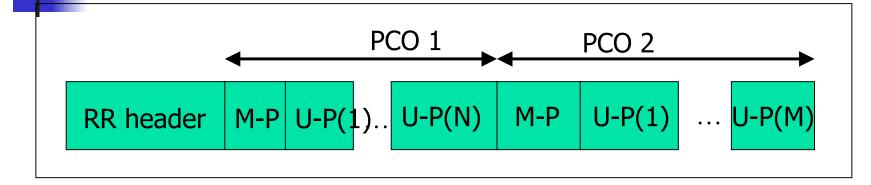
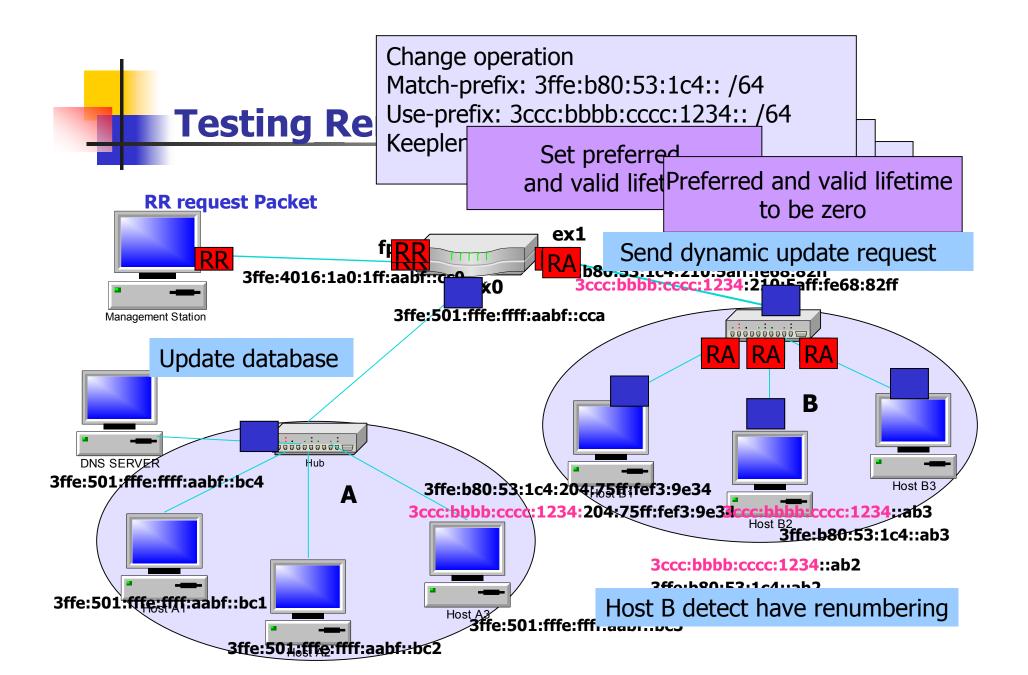


Figure1 Format of router renumbering command

Match-Prefix Part have 3 operations.

- 1. The ADD operation
- 2. The CHANGE operation
- 3. The SET-GLOBAL operation

Implementation


- Management station
 - Compile kernel
 - because the old kernel have not the rrenumd (router renumbering daemon)
 - Implement the function of operations.
- Router
 - enable to receive router renumbering request packets.
 - Implement the function of operations.

Implementation (Cont.)

- DNS Server
 - Configured AAAA Record type
 - Configured to support Dynamic DNS Update
- Firewall and TCP Wrapper
 - Host must be embedded the program for automatically update the filter rule.

The relationship between renumbering IP address and DNS, Firewall and TCP Wrapper

- Add a new address
- Update DNS (Filter rules)
- Set preferred and valid lifetime to be zero
- Delete a old address

Testing Router Renumbering

```
rtadvd[327]: router renumbering
rtadvd[327]: <rr_command_check> seq.seg 0.0 (last 0 [0.0.0.0.0.0.0.0]) from fe80
::250:baff:fe62:eb46
rtadvd[327]: flags is 16
                               Addtability battbresterface ex1
rtadvd[327]: checklen is 64
rtadvd[327].interface ex0
rtadvd[327]: addr = fe80:0001:0000:0000:0201:03ff:fe40:8b4f
rtadvd[327]: addr = 3ffe:0b80:0053:ffff:0201:03ff:fe40:8b4f
rtadvd[327] interface ex1
rtadvd[327]: addr = fe80:0002:0000:0000:0210:5aff:fe68:82ff
rtadvd[327]: addr = 3ffe:0b80:0053:01c4:0210:5aff:fe68:82ff
rtadvd[327]: matching addr = 3ffe:0b80:0053:01c4:0210:5aff:fe68:82ff prefix = 3f
fe-0b80-0053-01c4-0210-5aff-fe68-82ff
rtadvd[327]: address is 3ccc:bbbb:cccc:1234:210:5aff:fe68:82ff
rtadvd[327]: Add address = 3ccc:bbbb:cccc:1234:0210:5aff:fe68:82ff to interface
= ex1
rtadvd[327]: My address = 3ccc:bbbb:cccc:1234:0000:0000:0000 to interface =
```

Figure2 The procedure of the router for check match when renumber.

Testing DNS Renumbering

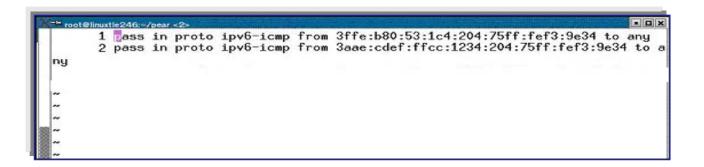

v=≕ root@linuxtle246:/etc/init.d		
;; AUTHORITY SECTION: cnr.v6.	1M IN NS	kannazung.cnr.v6.
:: ADDITIONAL SECTION		170 00 100 100
kannazung.cnr.v6.	1M IN A	172.30.130.132
;; res_findzonecut: a		
<pre>;; res_findzonecut: s ;; res_findzonecut: F</pre>		ng.cnr.v6): 1
;; res_nupdate: res_m		
;; res_send()		
		Lus: NOERROR, id: 46091
	= SUA, class =	, UPDATE: 1, ADDITIONAL: 0
		IN AAAA 3ccc:bbbb:cccc:1234:204:75ff:fef3:
;; Querying server (#	1) address = 1	172.30.130.132
;; new DG socket ;; got answer:		
	e: UPDATE, stat	tus: NOERROR, id: 46091
		ITE: 0, UPDATE: 0, ADDITIONAL: 0
"bash-2.05b# 📕		

Figure3 The output of testing DNS renumbering.

Testing DNS Renumbering (cont.)

[™] root@linuxtle246:/etc/init.d				• • ×
;; QUERY SECTION:		R: 2,	AUTHORITY: 1, ADDITIONAL	: 2
;; ANSWER SECTION:				
host1.cnr.v6.	6d23h59m58s IN	AAAA	3ccc:bbbb:cccc:1234:204	:75ff:fef3:9
e34 host1.cnr.v6.	6d23h59m58s IN	AAAA	3ffe:b80:53:1c4:204:75f	f:fef3:9e34
:: AUTHORITY SECTION: cnr.v6.	1M IN NS	kanr	nazung.cnr.v6.	
;; ADDITIONAL SECTION:				
kannazung.cnr.v6.	1M IN A	172.	30.130.132	
kannazung.cnr.v6.	1M IN AAAA	3ffe	:b80:53:ffff:204:75ff:fe	f3:9f46
<pre>;: Total query time: 7 ;; FROM: host1 to SERVE ;; WHEN: Tue Jan 27 10; ;; MSG SIZE sent: 30</pre>	ER: default 0 :35:59 2004	.0.0.0		
bash-2.05b#				

Figure4 The output when query to host1.cnr.v6

Figure5 The rules of firewall before renumbering occurred

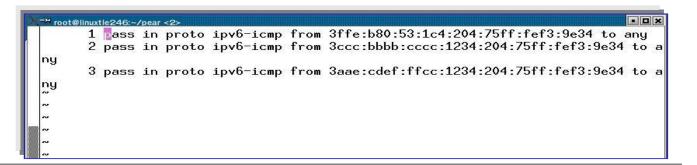
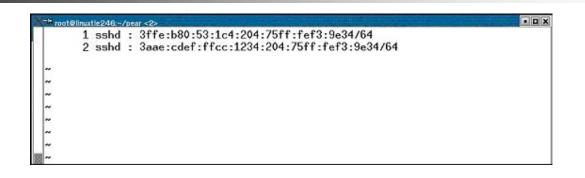



Figure6 The rules of firewall after renumbering occurred

Figure7 The rules of TCP Wrapper before renumbering occurred

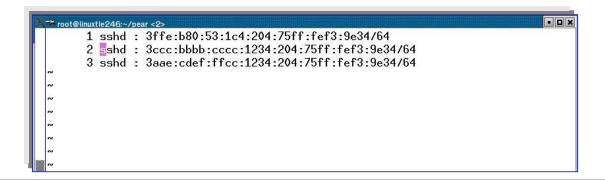


Figure8 The rules of TCP Wrapper after renumbering occurred

Konnegung on the	1 M T	N AAAA	3ffe:b80:53:ffff:204:75ff:fef3:9f46					
kannazung.cnr.v6.	TLI T	и пппп	3110:000:55:1111:204:7511:1013:5140					
;; AUTHORITY SECTION:								
cnr.v6.	1M T	N NS	kannazung.cnr.v6.					
;; ADDITIONAL SECTION:								
kannazung.cnr.v6.	1M]	NA	172.30.130.132					
;; res_findzonecut: add								
;; res_findzonecut: sat			g.cnr.v6): 1					
;; res_findzonecut: FI								
;; res_nupdate: res_mku	update	-> 58						
;; res_send()		тг	NOEDDOD : L ECZAL					
;; ->>HEADER<<- opcode								
;; 11ags:; 20NE: 1, PRI ;; cnr.v6, type =			UPDATE: 1, ADDITIONAL: 0					
host1 cpr v6	0S N	INF AAAA	3ffe:b80:53:1c4:204:75ff:fef3:9e34					
;; Querying server (# 1) address = 172.30.130.132 ;; new DG socket								
;; got answer:								
;; ->>HEADER<<- opcode: UPDATE, status: NOERROR, id: 56701								
;; flags: qr ra; ZONE: 0, PREREQUISITE: 0, UPDATE: 0, ADDITIONAL: 0								
bash-2.05b#								

Figure9 The information after update database, when life time to be zero

X	-M root@	linuxt	le246:~	/pear	<2>				• •	×
	a second	1	pass	in	proto	ipv6-icmp	from	3ccc:bbbb:cccc:1234:204:75ff:fef3:9e34	to	а
	ny	2	pass	in	proto	ipv6-icmp	from	3aae:cdef:ffcc:1234:204:75ff:fef3:9e34	to	а
	ny									
	~									
	~									
	~									
	~									

Figure10 Updating the filter firewall when the old rule was deleted.

X	-M root	t@linux	tle246:~	/pe	ar <2>	• • ×
	2	1	shd	-	3ccc:bbbb:cccc:1234:204:75ff:fef3:9e34/64	
					3aae:cdef:ffcc:1234:204:75ff:fef3:9e34/64	
	~					
	~					
	~					
	~					
3	~					
	~					
	~					
	~					
	~					
	~					
						*Command

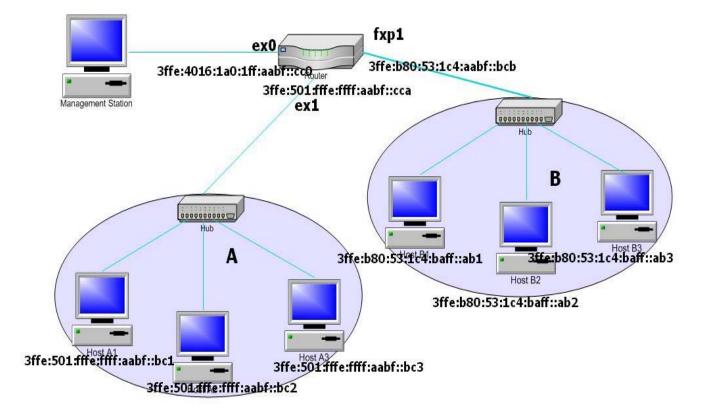
Figure11 Updating the TCP wrapper when the old rule was deleted

Conclusions

- Discussed the router renumbering protocol and process of renumbering IPv6 network
 - Host and Router
 - DNS
 - TCP Wrapper and Firewall
- Decreasing the task of system administrator for renumbering

References

- Chritian Huitema, "The IPv6 Header Format", *IPv6: The New Internet Protocol, Prentice Hall PTR, pp.60-62*, 1996.
- M.Crawford, "Router Renumbering for IPv6", *RFC 2894*, August 2000.
- H. Berkowitz, "Router Renumbering Guide", January 1997.
- KAME-snap kit, www.kame.net/snap-users.


References (Cont.)

- W. Simpson Daydream, "Neighbor Discovery for IP Version 6 (IPv6)", *RFC2461*, December 1998.
- M. Crawford, "DNS extension to support IPv6 address aggregation and renumbering", *RFC2874*, July 2000.
- S. Thomson, "IPv6 Stateless Address Autoconfiguration", *RFC 2462*, December 1998.

Question and Comment

