

NAC2005

SIIT-TU

A Low-Power Single-Ended Virtually-Grounded-Drain

Class AB Switched-Current Memory Cell with

Low Charge-Injection, Clock-Feedthrough and Conduction Errors

W. San-Um, B. Srisuchinwong and S.Tantraratana

Telecommunications Program

School of Communications, Instrumentation and Control Sirindhorn International Institute of Technology, Thammasat University

Contents

SIIT-TU

1.Introductions

- 1.1 Reviews on 3G Mobile Systems
- **1.2 Front End Receiver Architectures**
- 1.3 Sigma-Delta Analog-to-Digital Converters
- **1.4 Switched-Capacitor Techniques**
- 2. Existing Switched-Current Techniques and Primary Errors
 - 2.1 Existing SI memory cells
 - 2.2 Primary Errors
- 3. Proposed SI Single-Ended Virtually Grounded Drain Class AB SI cells
 - **3.1 Circuit Descriptions**
 - **3.2 Circuit Operations**
- 4. Simulation Results and Discussions
- 5. Conclusions

NAC2005

1.Introductions

1.1 Reviews on 3G Mobile Systems : Evolution of 3G Mobile Systems

Fig. 1. Evolution toward third-generation mobile systems.

Ref: Wolfgang et al., IEEE Journal of solid-state Circuits, Vol.36, No. 9, September 2001

1.1 Reviews on 3G Mobile Systems : Parameters and Requirements

Table. 1. Parameters and system requirements for W-CDMA.

Parameters	W-CDMA Requirements
Uplink	1,920 – 1,980 MHz
Downlink	2,110 – 2,170 MHz
Modulation	QPSK
Channel data clock rate	3.84 Mchip/s
Bandwidth	5 MHz
Access Method	DS-CDMA
Duplex	FDD

1.2 Front - End Receiver Architectures: Direct Conversion

Fig. 2. Block diagrams of analog direct conversion receiver.

1.2 Front - End Receiver Architectures: Direct Conversion

Fig. 3. Block diagrams of digital direct conversion receiver.

1.3 Sigma-Delta Analog-to-Digital Converters

(a) Low-Pass Sigma-Delta Modulations

(b) Band-Pass Sigma-Delta Modulations

Fig. 4. Block diagrams of lowpass and bandpass sigma-delta modulations.

1.4 Conventional Switched-Capacitor (SC) Techniques

Fig. 5. The circuit diagram of a single-ended switched-capacitor integrator.

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY SIIT-TU NAC2005

2. Existing Switched-Current Techniques and Primary Errors

2.1 Basic circuits utilizing class A configurations

Fig. 6. The circuit diagram of the first and second generation SI memory cells.

2. Existing Switched-Current Techniques and Primary Errors

2.2 Basic circuits utilizing class AB configurations

Fig. 7. The circuit diagram of a single-ended switched-capacitor integrator.

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY

2. Existing Switched-Current Techniques and Primary Errors

2.3 Errors from mechanisms of memory switches

Charge-Injection Errors

Channel charges in an inversion layer

$$Q_{ch} = W_2 L_2 C_{ox} (V_{gs2} - V_{T2}) \dots (1)$$

Resulting error voltage

δ

$$v_1 = \frac{Q_{ch}}{kC_{G1}}$$
 ... (2)

$$\delta v_1 = \frac{W_2 L_2 C_{ox} (v_{GS2} - V_{t2})}{k C_{G1}} \qquad ... (3)$$

Fig. 8. The first generation class A SI memory cell demonstrating switching mechanisms.

2. Existing Switched-Current Techniques and Primary Errors

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY

2.4 Errors from mechanisms of memory switches

THAMMASAT UNIVERSITY

Clock-Feedthrough Errors

The resulting error voltage

$$\delta V_2 = \left(\frac{C_{OV1}}{C_{OV1} + C_{G1}}\right) V_{CLK}$$
 ... (4)

SIIT-TU

Fig. 9. The first generation class A SI memory cell demonstrating switching mechanisms.

2. Existing Switched-Current Techniques and Primary Errors

2.5 Resulting error currents

The output current error

$$\delta i_{D1}[n+0.5] = k_1^{\prime} (\delta v)^2 + 2\sqrt{k_1^{\prime}} \delta v \sqrt{1 + \frac{i_{in}[n]}{J}} \qquad ... (5)$$

Taylor series analysis

$$\delta i_{D1}[n+0.5] = \delta i'_{D1}[n+0.5] + \delta i''_{D1}[n+0.5] \qquad \dots (6)$$

$$\delta I'_{D1}[n+0.5] = \frac{k'_{n}W_{1}}{2L_{1}} (\delta V)^{2} + \delta V \sqrt{\frac{2Jk'_{n}W_{1}}{L_{1}}} \qquad ... (7)$$

$$\delta i_{D_1}^{\prime\prime}[n+0.5] = \delta V \sqrt{\frac{2Jk_n W_1}{L_1}} \left(\frac{i[n]/J}{2} - \frac{(i[n]/J)^2}{8} + \frac{(i[n]/J)^3}{16} \dots \right) \qquad \dots (8)$$

SIRINDHORN INTERNATIONAL INSTITUTE OF TECHNOLOGY THAMMASAT UNIVERSITY

2. Existing Switched-Current Techniques and Primary Errors

2.6 Conduction errors

Fig. 10. Cascade connection of two memory cells.

Gate-source voltage at two phases

$$v_{GS1}[n] = \sqrt{\frac{(J + i_{in}[n])}{k_1}} + V_{t1}$$
 ... (9)

SIIT-TU

$$v_{GS2}[n+0.5] = \sqrt{\frac{2(i_{in}[n]+J)}{k_1'}} + V_{t2}$$
 ... (10)

Total output conductance

$$g_{oM1} = g_{o1} + g_{o3} + \left(\frac{C_{GD1}}{C_{G1} + C_{GD1}}\right)g_{m1} \dots$$
 (12)

The error current

$$\delta i_o[n+0.5] = g_{m,eff} (v_{GS2}[n+0.5] - v_{GS1}[n]) \dots$$
 (13)

13

Fig. 11. (a) block diagrams and (b) two-phase clock of the proposed single-ended virtually grounded drain class AB SI memory cell.

3. Proposed SI memory Cell

3.2 Circuit configurations in transistor levels

Fig. 12. circuit configurations the proposed single-ended virtually grounded drain class AB SI memory cell.

3. Proposed SI memory Cell

3.3 Circuit operations on the sampling phase

Fig. 13. Circuit operations on the sampling phase.

$$V_{N1}[n] = V_{DD} + \left(\frac{i_{in}[n]}{Ag_{m1} + Ag_{m2} + g_{o1} + g_{o2}}\right)$$
... (17)

Fig. 14. Circuit operations on the output phase.

3. Proposed SI memory Cell

3.5 z-Domain transformation

 Table 2. Time domain and z-domain transformations.

The output current is an inverted half-period delayed current sampled.

The current gain is ideally at unity.

Such transfer function is a basic function for implementing either integrator or resonator.

4. Simulation Results and Discussions

4.1 Simulation Environments

 Table 3. The simulation process and parameters.

Parameters	Process or values
Technology	Alcatel Mietec 0.5 μm CMOS C05MD Technology
Power voltage supply	±0.8 V
The ambient temperature	26° C
The clock voltage signal V _{CLK} is	0 to 0.8 V
Bias current	6 μA (Memory) and 1 μm (Amplifier)
Aspect ratio of PMOS Memory	27μm /2 μm
Aspect ratio of NMOS Memory	15μm /4 μm
Aspect ratio of NMOS Amplifier	5μm /2 μm
Aspect ratio of NMOS Switches	0.8 μm/0.5 μm

4. Results and Discussions

4.2 Current gains

NAC2005

4. Results and Discussions

4.3 Settling behaviors

Figure 16. Settling behaviors of the memory M_1 on the sampling phase $\Phi_1[n]$

NAC2005

4. Results and Discussions

4.4 Relative error currents

Figure 17. Plots of relative error currents of the memory cell versus input current signal.

4. Results and Discussions

4.5 Simulated input and output waveforms

Figure 18. Sinusoidal input current and resulting sampled output current waveforms, using dotted and solid lines, respectively.

5. Conclusions

- **5.1** The single-ended virtually grounded drain class AB SI memory cell has been presented.
- 5.2 The technique is relatively simple based on (i) a single-ended virtually grounded drain class AB memory using a level shifted grounded gate amplifier and (ii) an anti-offset class AB cell.
- **5.3** The proposed circuit offers low charge-injection, clock-feedthrough and conduction errors.
- **5.4** The relatively complex differential configuration and multiple-step sampling are not required.
- 5.5 As a particular example, the proposed circuit possesses the low-power consumption of 20 mW and the maximum useful sampling frequency of 70 MHz.
- **5.6** The half-period delay sampled output current has been demonstrated.
- 5.7 The proposed circuit is a potentially alternative for low-power low-error switched-current sigma-delta modulation used in W-CDMA receivers.

6. Acknowledgements

The authors are grateful to The National Electronics and Computer Technology Center (NECTEC) for supports through the research grant No.9/2544.

THANK YOU VERY MUCH