Performance Evaluation of Integer DCT for Image Compression (Invited Paper)

Somehart CHOKCHAITAM

Thammasat University, Bangkok, Thailand

Agenda

- Introduction + Motivation
- The Existing 1D Int-DCTs
- Lossless/Lossy Coding Criterion
- Simulation Results
- Conclusion

Introduction + Motivation

- The conventional DCT
 - A key transform in JPEG and MPEG
 - Can operate only lossy coding
- The Int-DCT
 - Has a compatibility with the conventional DCT
 - Can operate not only lossy coding but also lossless coding
 - Many kinds of Int-DCT have been proposed.
- Therefore, it's interesting to evaluate the existing Int-DCTs.

1. The Fukuma's 1D Int-DCT

The Fukuma's 1D Int-DCT

2. The Y-J. Chen's 1D Int-DCT

3. The Charith's N-point I2I-DCT-II

4. The Chokchaitam's 1D Int-DCT

The Chokchaitam's 8-point Int-DCT

Signal processing of lifting transformation

• **IDCT** matrix of the mentioned 8-point 1D Int-DCT

Name of the Int-DCT	Transform matrix
The Fukuma's 1D Int-DCT	IDCT _x
The Y-J. Chen's 1D Int-DCT	$\sqrt{8}$ IDCT _x
The Charith's 8-point I2I-DCT-II	IDCT _x
The Chokchaitam's1D Int-DCT	IDCT _P

$$\mathbf{IDCT}_{\mathbf{X}} = \begin{bmatrix} 1/\sqrt{8} \ 1/\sqrt{8} \$$

	0.2929	0.2929	0.2929	0.2929	0.2929	0.2929	0.2929	0.2929
	0.4809	0.4078	0.2725	0.0956	- 0.0956	-0.2725	-0.4078	- 0.4809
	0.5	0.2071	-0.2071	- 0.5	-0.5	-0.2071	0.2071	0.5
IDCT –	0.4239	- 0.0994	-0.5	-0.2832	0.2832	0.5	0.0994	- 0.4239
$\mathbf{IDCI}_{\mathbf{P}}$ –	0.3536	-0.3536	-0.3536	0.3536	0.3536	- 0.3536	- 0.3536	0.3536
	0.2725	-0.481	0.0956	0.4078	-0.4078	- 0.0956	0.481	-0.2725
	0.2133	-0.5152	0.5152	-0.2134	- 0.2134	0.5152	-0.5152	0.2133
	0.0995	-0.2832	0.4239	- 0.5	0.5	-0.4239	0.2832	- 0.0995

Lossless/Lossy Coding Criterion

• Lossless coding criterion

$$C_{LSL} = 20 \log_{10} \frac{2^{B_{PCM}}}{2^{B_{LSL}}}$$

• Lossy coding criterion

$$C_{LSY,Q} = 10 \log_{10} \frac{\sigma_{PCM}^2}{\sigma_{N_Q}^2} \qquad C_{LSY,Q} = C_{LSL} - \Omega$$

$$C_{LSY} = 10 \log_{10} \frac{\sigma_{PCM}^2}{10^{-C_{LSY,Q}} \sigma_{PCM}^2 + \sigma_{N_R}^2} \qquad \text{NAC2C}$$

Lossless/Lossy Coding Criterion

• Assumption for calculating a variance of rounding error

1) correlations between each of the errors and the signals are zero (statistical independence)

2) power spectrum of rounding error are flat.

Simulation Results

• Lossless coding criterion

Name of the Int-DCT	Average Lossless Coding criterion
The Fukuma's 1D Int-DCT	6.95
The Y-J. Chen's 1D Int-DCT	-8.39
The Charith's 8-point I2I-DCT-II	6.85
The Chokchaitam's1D Int-DCT	6.97

Simulation Results

• Lossy coding criterion

Name of the Int-DCT	No. rounding	A variance of		Q-lossy
	operation	rounding error	$\Omega_{ m opt}$	coding gain
The Fukuma's 1D Int-DCT	21	0.25	0	6.95
The Y-J. Chen's 1D Int-DCT	15	0.07	-18.06	9.67
The Charith's 8-point I2I-DCT-II	51	0.54	0	6.85
The Chokchaitam's 1D Int-DCT	8	0.11	0	6.97

Conclusion

Name of the Int-DCT	Lossless Coding	Lossy Coding
The Fukuma's 1D Int- DCT	2	3
The Y-J. Chen's 1D Int-DCT	4	1
The Charith's 8-point I2I-DCT-II	3	4
The Chokchaitam's1D Int-DCT	1	2

Thank you

Q & A

