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ABSTRACT – In this paper, we present a method of stabilizing uncertain time-delay systems. The 
systems under consideration are described by linear state delayed equation whose coefficient matrices 
contain norm-bounded time-varying elements. By some matching conditions, we can rend time-varying 
elements and reform the equation to linear state delayed equation with disturbances. Then we apply a linear 
transformation technique to reduce the uncertain systems to ones of which nominal systems are of delay-free 
type. Consequently, we can derive a suitable controller for the perturbed systems, and we will prove that the 
controller can robustly stabilize the closed-loop systems against perturbation. Finally, control system design 
for the two tanks chemical reactor with delayed recycle will be illustrated to show applicability of the 
proposed method. 
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1. INTRODUCTION 2. PROBLEM FORMULATION 
  
It is well known that time delay is frequently a source of 
instability. On the other hand, it is reasonable to include 
uncertain parameters and disturbance in practical control 
systems containing modeling errors, linearization 
approximations, etc. Therefore, the problem of robust 
stabilization of state delayed systems with uncertain 
parameters has received considerable attention of many 
researchers, and many solution approaches have been 
proposed [1-6]. 

Consider a class of uncertain time-delay systems (  
which defined by the following state equations 

)dS

 
 [ ] [ ] )()()()()( htxtAAtxtAAtx hh −∆++∆+=&  

 [ ] )()()( tBwtutBB +∆++      (1) 
 
where  is the current value of the system state, 

 is control function,  is the additive 
disturbance    are known constant matrices of 
appropriate dimensions, 

nRx∈
mR

,A
tu ∈)( lRtw ∈)(

,hA B
),(tA∆    are matrices 

whose elements are continuous, unknown but bounded 
functions,  is a known constant delay time and let 
initial fun tion of the system be specified as 

),(tAh∆ B∆ )(t

+∈h
c

R

[ ]( )nR;0,d hC −∈x )(0 η  where C  denote the Banach space 
of continuous vector-valued functions defined on an internal 

d

[ ]0,h−  taking values in  with norm: nR

)η(: ϕϕ =d sup η≤−h 0≤  where [ ]( )nRd hC −∈ϕ ;0, . 

 
In this paper we consider a class of time-delay systems 

containing uncertain parameters and additive disturbances as 
in [7]. Determination of controller parameters can be devided 
into two parts. First, the linear transformation propose by 
Fiagbedzi and Pearson [2] [8] is used to transform the original 
problem into a equivalent one which is easier to solve. Next, 
by using the well known Lyapunov min-max approach of 
Gutman [9], a suitable stabilizing control law is derived in the 
second part.  Finally, An example of product stream control 
of chemical reactor is given. 
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We propose a methods of controller design for 
stabilizing a uncertain time-delay system.  

  (5) h
hA

c AeAA c−+=
and 

  )()()( dcdu SAS σσσ ⊂⊂  (6) 
3. ASSUMPTIONS AND TRANSFORMATION 

TECHNIQUE 
where 

;{)( CsSd ∈=σ    }0)det( =−− −
h

hs AeAsI
3.1  Assumptions and 

 );({)( ddu SsS σσ ∈=   , }0)Re( ≥s
Before proposing our controllers, the following assumptions 
are made throughout here. 

 
Then,  satisfies eqn. 1 and hence eqn. 2, if and only if 

 satisfies the system of the form  
)(tx&

)(tz& )( oS 
3.1.1  Assumption 1: The nominal system of ; i.e., the 
system  which ∆  

)( dS
,)( dS =)(tA 0)( =∆ tAh ,0)( =∆ tB  

  are spectrally stabilizable. 0)( =tw
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Consequently, by this linear transformation, asymptotic 
stability of  implies asymptotic stability of . )(tz )(tx3.1.2  Assumption 2: For all  there are exist continuous 

matrix functions   and  of appropriate 
dimensions such that 
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where  is the restriction function of tx x  to the interval 

 translated to [ ; i.e., ]t,[ ht − ]0,h− dt Cx ∈  and 

 0≤),( ≤−+ ηη htx)(ηxt =

 
Fig 1.  block diagram of  and  (Sd ) ( )So

 
Proof:  

Note that if matching conditions defined in 
Assumption 2 are satisfies, we can rewrite system (  to 
the form 

)dS
By using the Leibniz’s formula [10], it is straightforward to 
verify that eqn. 2 in conjunction with the transformation eqn. 
4 yields eqn. 7; see Appendix (Section 9.1). Property (a) follows 
from Theorem 3.2 of [8]. To show the property (b) and (c), are 
obtained using Laplace transform eqn. 4 to obtain, after some 
rearrangement (see also Fig. 1), 
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Proposition 3.1 : Let the matrix  be defined by cA
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Proof: 
∫∫
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First, we take the positive definite function 
  { })(0 θ−−= htxL .  

  (14) )()()( tPztztV T
z =This implies that 
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The above analysis imply that )(tψ  does not influence 
stability of  and it can be verified that stability of  
implies asymptotic stability of .  
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4. CONTROLLER DESIGN and 

)(tVz
&  = s t V t ez

t( ) ( )− + −λ φ2  Theorem 4.1 : Suppose there exists a transforma-tion 
satisfying the hypothesis of proposition 3.1. Then, for given 

 > 0, there exist a positive definite solution P to the Riccati 
equation 
Q

 
So it can be verified that 

)(tVz  = V  [ ]∫ −−− ++
t tttt

z dtetseee
0

2)()0( φλλλ

  (9) 0=+−+ QPPBBPAPA T
c

T
c

≤ V  ∫ −−− +
t tttt

z dteeee
0

.2)0( φλλλ

Furthermore, a stabilizing control law is given by 

= 












−
−

+
−

−−

)(
12)0(

)(

φλ

φλ
λλ

t
tt

z
eeeV  

  (10) )()()( tututu NL +=

where 

 )(
2
1)( tPzBtu T

L −=  (11) Consequently, 

2)(tz  ≤ 












−
−

+
−−−

)(
1

)(
2

)(
)0( )(

minmin φλλλ

φλλλ ttt
z e

P
e

P
eV  and 

 
))()((

)()()(
2

tT
t

T
t

N
etPzBx

tPzBxtu
φρδ

ρ
−+

−=  (12) 
 
The above analysis implies that 
 0)(lim 2 =∞→ tzt  (15) where the nonlinear gain 

 )()()( tLEt xtux µµρ += , (13) 
Since stability of  implies stability of  as shown in 
proposition 3.1, we can now conclude that closed-loop system 
is asymptotically stable.  
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and  and δ is the positive scalar defined in 
Assumption 2-d. 
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Note that the time-varying parameters )(1 tkδ  and )(2 tkδ  
represent uncertainties of the system. In practice, exact 
values of both of parameters are unknown.  Nevertheless, it 
is reasonable to assume that their upper bound values are 
known; i.e., the information 1δ  and 2δ   such that 

1
v1

2
v2

Fd, cd
DISTURBANCE

F1, c1f
FRESH FEED

R, c2(t-h)
RECYCLE

Fp1, c1
PRODUCT STREAM, 1 Fp2, c2

PRODUCT STREAM, 2

F2, c2f
INTERSTAGE FEED

RECYCLE  R, c2

 

 
)(max 11 tk

t
δδ =  

and 
 )(max 22 tk

t
δδ =  

Fig 2. Two stage chemical reactor train with delay recycle 
  

respectively, are available.  For any given set point 
, our objective is to find a state feedback 

controller that make  and  converge to c  and c  
respectively.  To achieve this, we define the variables 

),( 21 ss cc

1c 2c s1 s2

5. ILLUSTRATIVE EXAMPLE 
 
Now we show how to control the two stage chemical reactor 
with delayed recycle stream, shown in Fig 2.  Reactor recycle 
not only increase the overall conversion, but also reduces the 
cost of a reaction, therefore, it is very popular in industry.  In 
order to recycle, the input to be recycled must be separated, 
from the yields, then travel through pipes after separation.  
This total time of recycle introduced delays in the state. 
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fsf ccu 111 −= ,   fsf ccu 222 −=
 

sccx 111 −= ,  ,   sccx 222 −= dsd ccd −=Consider the irreversible reaction  with 
negligible heat effect is carried out in the two stage reactor 
system.  Reactor temperature is maintained constant so that 
only the composition of product streams from the two 
reactors ,  need be controlled.  The manipulated 
variables are the feed compositions to the two reactors, c , 

 and the process disturbance is an extra feed stream,  

whose composition  varies because it comes from another 
processing unit.  The flow rates to the reactor system are 
fixed and only the compositions vary.  Suppose, at the input, 
that the fresh feed of pure 

BA →

1c 2c

f1

dFfc2

dc

A  is to be mixed with the recycle 
stream of unreacted A  with recycle flow rate .  Let R t  be 
instant of time.  Then the material balance equations for the 
reactor system are 

 
where  is a constant nominal value of the disturbance 
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Consequently, the material balance eqn. 15 and 16 can be 
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 where the second product stream, , is given by 2pF  
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Note that (  whenever 
; therefore, the objective can be 

achieved by stabilizing the above system described by eqns. 
18 and 19. Next, define a state vector 

),())(),( 2121 ss cctctc →
)0,0())(),(( 21 →txtx

B  = , 
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It now can be verified that state space description for eqns. 18 
and 19 is of the form (  with )dS

  
Note here that the nominal system is stable.  Indeed, it can be 
verified that 72791.21 −=s  and  are the poles 
of the nominal system.  Based on the procedure given in [8] 
with 
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{ }11, ss)(Ac =σ  the required matrix parameter  of 
the transformation is then determined to be 
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)(1 tkδ  ≤ 1δ ,  )(2 tkδ  ≤ 2δ , Next, solve to Lyapunov equation (2.3.12) with IQ =  to get 
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165341.03093344.0

A suitable control law is then given by eqn. 9 with δ = 1, φ  = 
0.5  and 
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Suppose that set point is chosen as 

c s1  = 0.5,  c s2  = 1.0 

  
Simulations are now presented for the corresponding closed-
loop system.  In these simulations, the uncertain parameters 
are taken to be as follows. 

To illustrate the proposed controller design, let us choose 

k1 = k  = 1,  v  = v  =1, 2 1 2

F1 = 0.4,  F2 = 0.5,  
)(1 tkδ  = 0 ,  )2sin(4. t )(2 tkδ  = , )2sin(5.0 t

Fp1 = 0.5,  Fp2 =0.5, 
)(td  = . )2sin(5.0 t

Fd =0.1,  R = 0.25,  h = 1, 

The initial condition  is taken to be  on 

[-1, 0]. The results of these simulations are shown in Fig 3. 

[ ]Tx 0.14.00 −−=δ1 =0.4,  δ2 = 0.5,  δ3 = 0.5, 

so that 
 θ1 = 0.75,  θ2 = 0.5, 

and hence 
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Since, for any scalar  ,0>α
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where  ( )n

d RCx ];0,[0 α−∈  denote the initial function. 
Consequently,  
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