
NECTEC Technical Journal, Vol. III, No. 11 104

Probabilistic Loop Scheduling for Applications
with Uncertain Execution Time

Sissades Tongsima, Edwin H.-M. Sha, Member, IEEE

Chantana Chantrapornchai, David R. Surma Member, IEEE and
Nelson Luiz Passos, Member, IEEE

ABSTRACT - One of the difficulties in high-level synthesis and compiler optimization is obtaining a good
schedule without knowing the exact computation time of the tasks involved. The uncertain computation
times of these tasks normally occur when conditional instructions are employed and/or inputs of the tasks
influence the computation time. The relationship between these tasks can be represented as a data-flow
graph where each node models the task associated with a probabilistic computation time. A set of edges
represents the dependencies between tasks. In this research, we study scheduling and optimization
algorithms taking into account the probabilistic execution times. Two novel algorithms, called probabilistic
retiming and probabilistic rotation scheduling, are developed for solving the underlying non-resource and
resource constrained scheduling problems respectively. Experimental results show that probabilistic
retiming consistently produces a graph with a smaller longest path computation time for a given confidence
level, as compared with the traditional retiming algorithm that assumes a fixed worst-case and average-case
computation times. Furthermore when considering the resource constraints and probabilistic environments,
probabilistic rotation scheduling gives a schedule whose length is guaranteed to satisfy a given probability
requirement. This schedule is better than schedules produced by other algorithms that consider worst-case
and average-case scenarios.
KEYWORDS - Scheduling, loop pipelining, probabilistic approach, retiming, rotation scheduling.

1. Introduction

In many practical applications such as interface systems,
fuzzy systems, artificial intelligence systems, and others, the
required tasks normally have uncertain computation times
(called uncertain or probabilistic tasks for brevity). Such
tasks normally contain conditional instructions and/or
operations that could take different computation times for
different inputs. A dynamic scheduling scheme may be
considered to address the problem; however, the decision of
the run-time scheduler which depends on the local on-line
knowledge may not give a good overall schedule. Although
many static scheduling techniques can thoroughly check for
the best assignment for dependent tasks, existing methods are
not able to deal with such uncertainty. Therefore, either
worst-case or average-case computation times for these tasks
are usually assumed. Such assumptions, however, may not be
applicable for the real operating situation and may result in
an inefficient schedule.

For iterative applications, statistics for the uncertain tasks are
not difficult to collect. In this paper, two novel loop
cheduling algorithms, probabilistic retiming (PR) and

probabilistic rotation scheduling (PRS), are proposed to
statically schedule these tasks for non-resource (assume
unlimited number of target processors) and resource
constrained (assume limited number of target processors)
systems respectively. These algorithms expose the
parallelism of the probabilistic tasks across iterations as well
as take advantage of the inherent statistical data. For a
system without resource constraints, PR can be applied to
optimize the input graph (i.e., reduce the length of the longest
path of the graph such that the probability of the longest path
computation time being less than or equal to some given
computation time, c, is greater than or equal to a given
confidence probabilityθ). The resulting graph implies a
schedule for the non-resource constrained system where the
longest path computation time determines its schedule length.
On the other hand, the PRS algorithm is used to schedule
uncertain tasks to a fixed number of multiple processing
elements. It produces a schedule length from the given graph
and incrementally reduces the length so that the probability of
it being less than the previous length is greater than or equal
to the given confidence probability.

• S. Tongsima is with the National Electronics and Computer Technology Center, National Science and Technology Development Agency, Bangkok 10400,

Thailand. E-mail: stongsim@hpcc.nectec.or.th.
• E.H.-M. Sha is with the Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556. E-mail: esha@cse.nd.edu.
• C. Chantrapornchai is with the Faculty of Sience, Silpakorn University, Noakorn Pathom 73000, Thailand.
• D.R. Surma is with the Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, IN 46383.
• N.L. Passos is with the Department of Computer Science, Midwestern State University, Wichita Falls, TX 76308.
This paper is reprinted from a paper published in IEEE Transaction on Computer. Vol. 49, No. 1, January 2000.

mailto:stongsim@hpcc.nectec.or.th
mailto:esha@cse.nd.edu

NECTEC Technical Journal, Vol. III, No. 11 105

Figure 1. Illustrates a sample code segment, the corresponding PG and its computation time, and the retimed graph.
(a) Code segment. (b) PG. (c) Timing information. (d) Retimed PG.

In order to be compatible with the current high performance
parallel processing technology, we assume that
synchronization is required at the end of each iteration. Such
a parallel computing style is also known as synchronous
parallelism [19], [10]. Both PR and PRS take an input
application which can be modeled as a probabilistic data-flow
graph (PG), which is a generalized version of a data-flow
graph (DFG) where a node corresponds to a task (a collection
of statements), and a set of edges representing dependencies
between these tasks and determine a schedule. The loop-
carried dependences (dependency distances) between tasks in
different iterations are represented by short bar lines on the
corresponding edges. Since the computation times of the
nodes can be either fixed or varied, a probability model is
employed to represent the timing of the task.

Fig.1b shows an example of a PG consisting of four nodes.
Note that such a graph models the code segment presented in
Fig. 1a, where, for example, A in the PG corresponds to A1
and A2 of the code segment. Two bar lines on the edge
between nodes D and A represent the dependency distances
between these two nodes. The computation time of nodes A
and C are known to be fixed (2 time units). In this code, the
uncertainty occurs in the computation of nodes B and D.
Assume that each arithmetic operation and the assignment
operation (=) take 1 time unit. Furthermore, the computation
time of the comparison and random number generating
operations are assumed negligible. Hence, it may take either
4 or 2 time units to execute node B. Put another way, about
20 percent of the time (51 out of 256), statement B2 will be
executed and node B will take 4 time units; otherwise node
B takes only 2 time units (B3 has only one operation).
Likewise, approximately 25 percent (64 out of 256), node D
takes 4 time units, and about 75 percent, it will take 2 time
units. Each entry in Fig. 1c shows a probability associated
with each node's possible computation time (the probability
distribution). By taking into account these varying timing
characteristics, the proposed technique can be applied to a
wide variety of applications in high-level synthesis and
compiler optimization.

Considerable research has been conducted in the area of
finding a schedule of a directed-acyclic graph (DAG) for
multiple processing systems. (Note that DAGs are obtained

from DFGs by ignoring edges of a DFG containing one or
more dependency distances.) Many heuristics have been
proposed to schedule DAGs, e.g., list scheduling, graph
decomposition [13], [11], etc. These methods, however,
consider neither exploring the parallelism across iterations
nor addressing the problems of probabilistic tasks.

For instruction level parallelism (ILP) scheduling, trace
scheduling [9] is used to globally schedule DAGs by
rearraging some operations in the graphs. Percolation
scheduling is used in a development environment [1] for
microcode compaction, i.e., parallelism extraction of
horizontal microcode. Nevertheless, the graph model used in
these techniques does not reflect the uncertainty in node
computation times. In the class of global cyclic scheduling,
software pipelining [16] is used to overlap instructions,
whereby the parallelism is exposed across iterations. This
technique, however, expands the graph by unfolding or
unrolling [22] it resulting in a larger code size. Loop
transformations are also common techniques used to
construct parallel compilers. They restructure loops from the
repetitive code segment in order to reduce the total execution
time of the schedule [2], [3], [20], [27], [28]. These
techniques, however, do not consider that the target systems
have limited number of processors or that task computation
times are uncertain.

Modulo scheduling [24], [25], [26] is a popular technique in
compiler design for exploiting ILP in loops which results in
optimized codes. This framework specifies a lower bound,
called initiation interval (II), to start with and strives to
schedule nodes based on such knowledge. Much research
was introduced to improve and/or expand the capability of
modulo scheduling. For example, research was presented
which improved modulo scheduling by producing schedules
while considering limited number of registers [7], [8], [21].
In [17], a combination of modulo scheduling and loop
unrolling was introduced and applied in the IMPACT
compiler [4]. These ILP approaches, however, are limited to
solving problems without considering uncertain computation
times (probabilistic graph model).

Some research considers the uncertainty inherit in the
computation time of nodes. Ku and De Micheli [14], [15]
proposed a relative scheduling method which handles tasks

NECTEC Technical Journal, Vol. III, No. 11 106

with unbounded delays. Nevertheless, their approach
considers a DAG as an input and does not explore the
parallelism across iterations. Furthermore, even if the
statistics of the computation time of uncertain nodes is
collected, their method will not exploit this information. A
framework that is able to handle imprecise propagation
delays is proposed by Karkowski and Otten [12]. In their
approach, fuzzy set theory [29] was employed to model the
imprecise computation times. Although their approach is
equivalent to finding a schedule of imprecise tasks to a non-
resource constrained system, their model is restricted to a
simple triangular fuzzy distribution and does not consider
probability values.

For scheduling under resource constraints, the rotation
scheduling technique was presented by Chao et al. [5], [6]
and was extended to handle multi-dimensional applications
by Passos et al. [23]. Rotation scheduling attempts to pipeline
a loop by assigning nodes from the loop to the system with a
limited number of processing elements. It implicitly uses
traditional retiming [18] in order to reduce the total
computation time of the nodes along the longest paths (also
called the critical paths), in the DFG. In other words, the
graph is transformed in such a way that the parallelism is
exposed but the behavior of the graph is preserved. In this
paper, the rotation scheduling technique is extended so that it
can deal with uncertain tasks.

Since the computation time of a node in a PG is a random
variable, the total computation time of this graph is also a
random variable. The concept of a control step (the
synchronization of the tasks “within” each iteration) is no

longer applicable. A schedule conveys only the execution
order or pattern of the tasks being executed in a functional
unit and/or between different units. In order to compute the
total computation time of this ordering, a probabilistic task-
assignment graph (PTG) is constructed. A PTG is obtained
from a PG in which non-zero dependency distance edges are
ignored and each node is assigned to a specific functional
unit in the system. The PTG also contains additional edges,
called flow-control edges where a connection from u to v
means that u is executed immediately before v using the same
functional unit. Note that in the non-resource constrained
scenario, the PTG will be the DAG portion of the PG (a
subgraph that contains only no dependency distance edges).

Let us use the example in Fig. 1b. Assume that the term
longest path computation time entails finding the maximum
of the summation of computation times of nodes along paths
which contain no dependency distances. After examining all
possible longest paths of this graph, it is likely (60 percent)
that its longest path computation time is less than or equal to
8. The details of how this value is determined is given in
Section 3. Note that if all nodes in this graph are assigned
their worst-case values, the longest path computation time (or
schedule length for non-resource constrained systems) of this
graph will be 10. One might wish to reduce the longest path
of this graph in nearly all cases, for example reducing the
chance of the clock period being greater than 6. By applying
probabilistic retiming, the longest path computation time of
the graph may be improved with respect to the given
constraint. The modified graph after retiming is shown in Fig.
1d. The longest path computation time of this graph is less
than than or equal to 6 with 20 percent chance.

Figure 2. Illustrates an example of PTG, its corresponding repeated pattern, and the static execution order.
(a) The PTG. (b) Initial execution pattern. (c) Schedule.

Figure 3. Illustrates the corresponding retimed PG and the repeated pattern after changing iteration window.
(a) Rotate A. (b) Reshaping iteration window.

NECTEC Technical Journal, Vol. III, No. 11 107

If we need to schedule nodes from the PG to two
homogeneous functional units, a possible PTG can be
constructed as shown in Fig. 2a. Since the input graph is
cyclic, an execution pattern of this PTG is repeated and the
synchronization is applied at the end of each iteration, as
shown in Fig. 2a. The solid edges in this PTG represent those
zero dependency distance edges, called dependency edges,
from the input graph (see Fig. 1b). In this figure, nodes A, B
and D are assigned to PE0 and node C is bound to PE1. Note
that D is implicitly executed after A; therefore, the direct edge
from A to D from the original input graph can be omitted. A
corresponding static schedule which shows only one iteration
from the execution pattern is shown in Fig. 2c.

The resulting longest path computation time of the PTG is
less than 9 units with 90 percent certainty. This longest path
timing and its probability are also known as a schedule length
for resource constrained systems. We can improve the
resulting schedule length by applying our probabilistic
rotation scheduling algorithm to the PG and its PTG. In this
case the algorithm first selects the root node A to be
rescheduled. Then one dependency distance from the
incoming edges of node A is moved to all its outgoing edges.
Fig.3a. shows the resulting transformation graph of the PG.
This new graph will be used as a reference to later update the
PTG. The new execution pattern is equivalent to reshaping
the iteration window as presented in Fig. 3b.

Figure 4. Illustrates the resulting PTG and its execution
order after rescheduling A. (a) PTG. (b) Static execution

order.

By applying the PRS algorithm, node A from the next
iteration (see Fig. 3b.) is introduced to the static execution
pattern. Note that node A has no inter-iteration dependencies
associated with it. Therefore, A can be rescheduled to any
available functional unit. One possible schedule is to assign
node A immediately after node C in PE1. The resulting PTG
and the new execution order are shown in Fig. 4a and 4b,
respectively. The dotted arrow from C to A in this new PTG
represents the flow-control edge. For this PTG, the resulting
schedule length will be less than seven with higher than 90
percent confidence.

The remainder of this paper is organized as follows. Section 2
presents the graph model used in this work. Required
terminology and fundamental concepts are also presented.
Section 3 discusses probabilistic retiming and the algorithm
for computing a total computation time of a probabilistic
graph. The probabilistic rotation scheduling algorithm and
the supported routines will be discussed in Section 4.
Experimental results are discussed in Section 5. Finally,
Section 6 draws conclusions of this research.

2. Preliminaries

In this section, the graph model which is used to represent
tasks with uncertain computation times is introduced.
Terminology and notations relevant to this work are also
discussed. We begin by examining a DFG that contains tasks
with uncertain computation time which can be modeled as a
probabilistic graph (PG). The following gives the formal
definition for such a graph.

Definition 2.1. A probabilistic graph (PG) is a vertex-
weighted, edge-weighted, directed graph G = 〈 V,E,d,T 〉 ,
where V is the set of vertices representing tasks, E is the
set of edges representing the data dependencies between
vertices, d is a function from E to the set of non-negative
integers, representing the number of dependency distance
on an edge, and Tv is a random variable representing the
computation time of a node v ∈ V.

Note that traditional DFGs are a special case of PGs where all
probabilities equal one. Each vertex v ∈V is weighted with a
probability distribution of the computation time, given by Tv,
where Tv is a discrete random variable corresponding to the
computation time of v such that Σ∀x Pr(Tv = x) = 1. The
notation Pr(Tv = x) is read “the probability that random
variable T assumes value x''. The probability distribution of
T is assumed to be discrete in this paper. The granularity of
the resulting probability distribution, if necessary, depends on
the needed degree of accuracy.

An edge e ∈ E from u to v, u, v ∈ V, is denoted by
u v and a path p starting from u and ending at v is

indicated by the notation u

→ e

p

~ >v. The number of dependency
distances of path p(d(p)), p = v0 v→ 0e

→ 1e

→5e

1 → 1e

→ 2e

→ 7e

. . .

 → −1ke

→ 3e

vk is d(p) = ∑ i d(e1
0

−
=

k
i). As an example, Fig. 1b

has the set of edges E = {A B, A C,

A D, B D, C D, D A}.
The number of dependency distances on each edge e ∈ E is
given by d(e), where, for i = 1,…, 6, d(e

 → 4e

i) = 0 and d(e7) = 2.

The execution order or execution pattern of a PG are
determined by the precedence relations in the graph. During
one iteration of the graph each vertex in the execution order
is computed exactly one time. Multiple iterations are
identified by index i, starting from 0. Inter-iteration
dependencies are represented by weighted edges or
dependency distances. For any iteration j, an edge e from u to
v with dependency distance d(e) conveys that the
computation of node v at iteration j depends on the execution
of node u at iteration j - d(e). An edge with no dependency
distances represents a data dependency within the same
iteration. A legal data flow graph must have strictly positive
dependency distance cycles, i.e., the summation of the d(e)
along any cycle cannot be less than or equal to zero.

NECTEC Technical Journal, Vol. III, No. 11 108

2.1 Retiming Overview
Retiming operations rearrange registers in a circuit or
dependency distances in a data-flow graph in such a way that
the behavior of the circuit is preserved while achieving a
faster circuit. Traditionally, retiming [18] optimizes a
synchronous circuit (graph) G = 〈V, E, d, t〉 which has non-
probabilistic functional elements, i.e., each of the vertices v ∈
V is associated with a fixed numerical timing value. The
optimization goal is normally to reduce the clock period or
cycle period Φ(G) (also known as longest path computation
time). The cycle period represents the execution time of the
longest path (referred to as the critical path) that has all zero
dependency distance edges. It is defined by the equations

Φ(G) = max{t(p) : d(p) = 0}, where
p = v0 → 0e

k
0=

v1 → 1e . . . → −1ke

1
0

−
=

vk ,
t(p) = ∑ i t(vi), and d(p) = ∑ k

i d(ei).

Retiming of a graph G = 〈V, E, d, t〉 is a transformation
function from vertices to the set of integers, r : Va Z . The
retiming function describes the movement of dependency
distances with respect to the vertices so as to transform G into
a new graph Gr = 〈V, E, dr, t〉, where dr represents the
number of dependency distances on the edges of Gr. The
positive (or negative) value of the retiming function
determines the movement of the dependency distances.
During retiming the same number of dependency distances is
pushed from all incoming (outgoing) edges of a node to all
outgoing (incoming) edges. If a single dependency distance is
pushed from all incoming edges of node u ∈ V to all outgoing
edges of node u, then r(u) = 1. Conversely, if one dependency
distance is pushed from all outgoing to all incoming edges of
u, then r(u) = -1. The absolute value of the retiming function
conveys the number of dependency distances that are pushed.
An algorithm to find a set of retiming functions to minimize
the clock period of the graph presented in [18] is a
polynomial time algorithm which has the time complexity of
O(|V| |E| log |V|).

Figure 5. Illustrates retiming transformations ((a) before and
(b) after retiming) where dotted edges represent the critical

path.

Consider Fig. 5a, which illustrates a simple graph with four
vertices, A, B, C and D. The numbers next to the vertices in
the figure represent the required computation times. Fig. 5b
represents a retimed version of Fig. 5a where r(B) = r(C) = 1,
r(A) = 2, and r(D) = 0. In this case, the movement of
dependency distances is as follows: r(A) = 2 is equivalent to
removing two dependency distances from the incoming edge

of vertex A, D A and adding them onto edges
A B, A C, and A D. The retiming
functions for nodes C and B are r(B) = r(C) = 1. This means
that one dependency distance from A B is pushed
through vertex B to edge B D. Similarly, one
dependency distance from edge A C is pushed
through vertex C to C D. An equivalent set of
retimings in Fig. 5b is r(B) = r(C) = -1, r(D) = -2, and
r(A) = 0. This equivalent set of retimings produces the same
graph by pushing the dependency distances backward
through nodes D, B and C, instead of forward through nodes
A, B and C. The dotted lines in Fig. 5a represent the critical
path of the graph, for which Φ(G) = 5. After retiming, the
critical path becomes Φ(G) = 3, as illustrated by the dotted
line in Fig. 5b.

→ e

→ e→ e → e

 e

→ e

→ e

→

→ e

The following summarizes some essential properties of the
retiming transformation:

1. r is a legal retiming if dr(e) 0, ∀e ∈ E. ≥
2. For an edge u v, where u, v ∈ V, → e

dr(e) = dr(e) + r(u) - r(v).

3. For a path u
p

~ > v, where u, v ∈ V,
dr(p) = dr(p) + r(u) - r(v).

4. In any directed cycle (l) of G and Gr, dr(l) = d(l) > 0.

Property 1 guarantees that the retimed graph will not have
any edge containing a negative number of dependency
distances. Properties 2 and 3 explain the movement of such
distances. If r(v), v ∈ V, has a positive value, the distances
will be deleted from the incoming edge(s) of v and inserted
onto the outgoing edge(s), and vice versa if r(v) has the
negative value. Finally, Property 4 ensures that the number
of dependency distances in any loop of the graph remains
constant. That requires that all cycles have at least one
dependency distance. Since retiming is an optimization
technique which is subject to unlimited number of target
resources, the resulting longest path computation time after
the transformation is the underlying schedule length.
Consider only a DAG part of the retimed graph where edges
with nonzero dependency distances in the retimed graph are
ignored. The iteration boundaries of this schedule will be at
the root nodes (beginning of the iteration) and at the leaf
nodes (end of the iteration).

2.2 Rotation Scheduling
In [5], Chao et al. proposed an algorithm, called rotation
scheduling, which uses the retiming algorithm to deal with
scheduling a cyclic DFG under resource constraints. The
input to the rotation scheduling algorithm is a DFG and its
corresponding static schedule, i.e., a synchronized order of
the nodes in the DFG. Rotation scheduling reduces the
schedule length (the number of control steps needed to
execute one iteration of the schedule) by exploiting the
parallelism between iterations. This is accomplished by
shifting the scope of a static schedule in one iteration, called
the iteration window, down by one control step. Looking at a

NECTEC Technical Journal, Vol. III, No. 11 109

static iteration, rotation scheduling analogously rotates tasks
from the top of the schedule of each iteration down to the
end. This process is equivalent to retiming those tasks (nodes
in the DFG) in which one dependency distance will be
deleted from all their incoming edges and added to all their
outgoing edges resulting in an intermediate retimed graph.
Once the parallelism is extracted, the algorithm reassigns the
rotated nodes to new positions so that the schedule length is
shorter.

As an example, the cyclic DFG in Fig. 6a is to be scheduled
using two processing elements. Fig. 6b presents one possible
static schedule for such a graph. By using rotation

scheduling, this schedule can be optimized. First, the
algorithm uses node A from the next iteration. The original
graph is retimed by r(A) = 1, i.e., one dependency distance
from E A is moved to all outgoing edges of A (see
Fig. 6c). By doing so, node A now can be executed at any
control step in this new iteration window. Assume that
rotation scheduling uses a remapping strategy that places
node A immediately after node C in PE

→ e

1. The resulting static
schedule length is then reduced by one control step as shown
in Fig. 6d. In Section 4, the concept of the schedule length
and the remapping strategy will be extended to handle
probabilistic inputs.

Figure 6. Illustrates an example to represent how rotation scheduling optimizes the underlying schedule length.
(a) Cyclic DFG. (b) Static schedule. (c) Retimed. (d) Resulting schedule.

3. Nonresource Constrained Scheduling

Assuming there are infinite available resources, one can
optimize a PG with respect to a desired longest path
computation time and confidence level, i.e., attempt to reduce
the longest path computation time of the graph. The
distribution of dependency distances in the PG is done
according to a probabilistic timing constraint where the
probability of obtaining the timing result (longest path
computation time) being less than or equal to a given value c
is greater than some confidence probability value θ. This
resulting timing information is essentially the schedule length
of the nonresource constrained problem. This section presents
an efficient algorithm for optimizing a probabilistic graph
with respect to a desired computation time (c) and its
corresponding confidence probability (θ). In order to evaluate
the modified graph, we need to know the probability
distribution associated with its computation time. The
remaining subsections discuss these issues.

3.1 Computing Maximum Reaching Time
Let Gdag be the DAG portion (the subgraph that has only
edges with no dependency distances) of a probabilistic graph
G. Assume that two dummy nodes, vs and vd, are added to
Gdag, where vs connects to all source nodes (roots) and vd is
connected by all sink nodes (leaves). Traditionally, the
longest path computation time of a graph is computed by

maximizing the summation of computation times of nodes
along the critical (longest) paths between these dummy
nodes. Likewise, for a probabilistic graph, we can compute
the summation of the computation time for each path from vs
to vd in the graph. In this case the largest summation value is
called the maximum reaching time or mrt of the graph. The
mrt of a PG exhibits a possible longest path computation time
of the graph and its associated probability. Therefore, unlike
the traditional approach, the summation and maximum
functions of computation time along the paths in a PG
become functions of multiple random variables.

To compute an mrt of a PG, we need to modify the graph so
that vs and vd are connected to the DAG portion of the
original graph. Formally, a set of zero dependency distance
edges is used to connect vertex vs to all roots, and to connect
all leaves to vertex vd. Since it is nontrivial to efficiently
compute a function of dependent random variables,
Algorithm 1 computes the mrt(G) assuming that the random
variables are independent. This algorithm traverses the input
graph in the breadth-first fashion starting from vs and ending
at vd. In general, the algorithm accumulates the probabilistic
computation times along each traversed path. When it reaches
a node that has more than one parent, all the values
associated with its parents are maximized.

Algorithm 1 Calculate maximum reaching time of graph G
Require probabilistic graph PG
Ensure mrt(G) = tempmrt (vs, vd)

NECTEC Technical Journal, Vol. III, No. 11 110

1. G0 = 〈V0, E0, d, T〉 such that V0 = V + {vs, vd}

2. E0 = E - {e ∈ E : d(e) ≠ 0} + {vs → e v ∈ Vr, u ∈

Vl → e vd}

3. ∀ u ∈ V0, tempmrt(vs, u) = 0, Tv s = Tv d = 0, Queue = vs

4. while Queue ≠ 0 do
5. get node u from top of the Queue
6. tempmrt(vs, u) = tempmrt(vs, u) + Tu

7. for all u v do → e

8. decrement the incoming degree of node v by one
9. tempmrt(vs, v) = max(tempmrt(vs, u), tempmrt(vs, v))
10. if incoming degree of node v becomes 0 then
11. insert node v into the Queue
12. end if
13. end for
14. end while

Lines 1 and 2 produce DAG G0 from G containing only edges
e ∈ E, with d(e) = 0, and the additional zero dependency
distance edges connecting vs to every root node v ∈ Vr of G
and connecting every leaf node u ∈ Vl of G to vd. Line 3
initializes the tempmrt(vs, u) value for each vertex u in the new
graph and sets the computation time of Tv s and Tv d to zero.
Lines 4-12 traverse the graph in topological order and
compute the mrt of each v with respect to vs (tempmrt(vs, vd)).
Note that the tempmrt for node v with respect to vs is originally
set to zero. It stores the current maximum computation time
of all node v's visited parents. When the first parent of v is
dequeued, v has its indegree reduced by one (Line 8) and
tempmrt mrt is updated (Line 9). Vertex v's other parents are in
turn dequeued, and the process is repeated. Eventually, the
last parent of node v will be dequeued and maximized. At this
point, node v will be inserted into the queue since all parents
have been considered, i.e., indegree of v equals zero (Line
10). Node v will be eventually dequeued by Line 5. Line 6
will then add Tv to the tempmrt of node v producing the final
mrt with respect to all paths reaching node v.

Note that the initial computation times are integers and the
probabilities associated with these times being greater than
the given value c are accumulated as one value in the
algorithm. Only O(c+1) values need to be stored for each
vertex. Therefore, the time complexity for calculating the
summation (Line 6), or the maximum (Line 9) of two vertices
is O(c2). Since the algorithm computes the result in a breadth
first fashion, the running time of Algorithm 1 is O(c2|V| |E|),
while the space complexity is bounded by O(c|V|).

3.2 Probabilistic Retiming

Using the concept of mrt, Algorithm 2 presents the
probabilistic retiming algorithm which reduces the longest
path computation time of the given PG to meet a timing
constraint. Such a constraint is that Pr(mrt(vs, vd) < c) > θ
where c is the desired longest path computation time of the
graph and θ is the confidence probability. This requirement
can be rewritten as Pr(mrt(vs, vd) < c) ≤ δ, where δ is 1 - θ.
The algorithm retimes vertices whose probability of
computation time being greater than c is larger than the

acceptable probability value. Initially, the retiming value for
each node is set to zero and nonzero dependency distance
edges are eliminated. Then, vs is connected to the root-
vertices of the resulting DAG and vd is connected by the leaf-
vertices of the DAG. Lines7-17 traverse the DAG in a breath-
first search manner and update the tempmrt for each node as in
Algorithm 1. After updating a vertex, the resulting tempmrt is
tested to see if the requirement, Pr(tempmrt(G) > c) ≤ δ, is
met. Line 19, then decreases the retiming value of any vertex
v that violates the requirement unless the vertex has
previously been retimed in a current iteration. The algorithm
then repeats the above process using the retimed graph
obtained from the previous iteration. If the algorithm finds
the solution for a given clock period, the final retimed graph
implies the number of required resources to achieve such a
schedule length.

Algorithm 2 Probabilistic retiming
Require probabilistic graph, a requirement Pr(tempmrt(G) >
c) ≤ δ
Ensure retiming function r for each node to meet the
requirement

1. ∀ node v ∈ V initialize retiming function r(v) to 0
2. for i = 1 to |V| do
3. retime graph Gr with the retiming function r(v)
4. G0 = directed acyclic portion (DAG) of Gr
5. prepend dummy node vs to G0
 {connects to all root nodes}
6. append dummy node vd to G0

 {connected by all leaf nodes}
7. for all nodes in G0 do
8. tempmrt(vs, u) = 0
9. insert vs into Queue
10. Tv s = Tv d = 0 {set timing of two dummies to

 zero}
11. end for
12. while Queue ≠ 0
13. get node u from the Queue
14. tempmrt(vs, u) = tempmrt(vs, u) + Tu {adding two

 random variables}

15. for all u v ∈ G→ e
0 do

16. decrement number of incoming degrees of node
 v by one

17. tempmrt(vs, v) = max(tempmrt(vs, u),
 tempmrt(vs, v)) {maximizing two random
 variables}

18. if Pr(tempmrt(vs, v) > c) > δ and u has not been
 retimed then

19. r(u) = r(u) -1 {move one dependency
 distances from all outgoing edges to all

 incoming edges}
20. end if
21. if number of incoming edges of node v is 0

 then
22. insert node v into a ready Queue
23. end if
24. end for
25. end while
26. end for

NECTEC Technical Journal, Vol. III, No. 11 111

Line 19 pushes a dependency distance onto all incoming
edges of a node that violates the timing constraint. Since all
descendents of this node will also be retimed, Line 19 in
essence moves a dependency distance from below vd to above
this node. In other words, r(u) = r(u) – 1 for all nodes from u
to vd. Hence only the incoming edges of vertex u will have an
additional dependency distance. Once all nodes are not
retimed in the current iteration, the requirement Pr(mrt(vs, vd)
> c) ≤ δ is met. Then the algorithm stops and reports the
resulting retiming functions associated with nodes in the
graph. Otherwise, the algorithm repeats at most |V| times.
Since the computation of the maximum reaching time is
performed in every iteration, the time complexity of this

algorithm is O(c2|V|2|E|) while the space complexity remains
the same as in the maximum reaching time algorithm. The
resulting retiming function returned by Algorithm 2
guarantees (necessary condition) the following:

Theorem 3.1. Given G = 〈V, E, d, T〉, a desired cycle period,
c, and a confidence probability, θ = 1 - δ, if Algorithm 2
(probabilistic retiming algorithm) finds a solution, then
the resulting retimed graph Gr satisfies the requirement
Pr(mrt(G) ≤ c) ≥ θ.

Figure 7. Illustrates an example of a 9-node graph and its corresponding probabilistic timing information.

Figure 8. Illustrates retimed graph corresponding to Table 1, 2, and 3.

Table 1. Shows first iteration showing probability distribution of mrt(vs, v), v ∈ V

Pr(mrt(vs, v)) for different time
v ∈ V

1 2 3 4 5 6 > c
r(v)

A 0.3 0.7 0 0 0 0 0 0
B 0 0 0.24 0.56 0 0.06 0.14 0
C 0 0 0 0.15 0.5 0.35 0 0
D 0 0 0 0 0.108 0.372 0.520 -1
E 0 0.5 0 0.5 0 0 0 0
F 0 0 0.250 0 0.5 0 0.25 -1
G 0 0 0.45 0 0.45 0.05 0.050 0
H 0 0 0 0.056 0 0.338 0.606 -1
I 0 0 0 0 0 0 1 -1
vd 0 0 0 0 0 0 1 0

NECTEC Technical Journal, Vol. III, No. 11 112

Table 2. Shows second iteration showing probability distribution of mrt(vs, v), v ∈ V

Pr(mrt(vs, v)) for different time
v ∈ V

1 2 3 4 5 6 > c
r(v)

A 0.3 0.7 0 0 0 0 0 0
B 0 0 0.24 0.56 0 0.06 0.14 0
C 0 0 0 0.15 0.5 0.35 0 0
D 0.9 0.1 0 0 0 0 0 -1
E 0 0.5 0 0.5 0 0 0 0
F 0.5 0 0.5 0 0 0 0 -1
G 0.9 0 0 0.1 0 0 0 0
H 0 0.225 0 0.45 0.05 0.225 0.5 -1
I 0 0 0 0.112 0.112 0.225 0.550 -2
vd 0 0 0 0.013 0.103 0.27 0.613 0

Table 3. Shows third iteration showing probability distribution of mrt(vs, v), v ∈ V

Pr(mrt(vs, v)) for different time
v ∈ V

1 2 3 4 5 6 > c
r(v)

A 0 0 0.15 0.5 0.35 0 0 0
B 0 0 0 0 0.12 0.4 0.48 -1
C 0 0 0 0 0 0.075 0.925 -1
D 0.9 0.1 0 0 0 0 0 -1
E 0 0.5 0 0.5 0 0 0 0
F 0.5 0 0.5 0 0 0 0 -1
G 0.9 0 0 0.1 0 0 0 0
H 0 0.225 0 0.45 0.05 0.225 0.05 -1
I 0 0.5 0.5 0 0 0 0 -2
vd 0 0 0 0 0 0.037 0.963 0

3.3 Example
Consider the PG and the probability distribution associated
with nodes in the graph in Fig.7. For this experiment, let c =
6 be the desired longest path computation time and δ = 0.2 be
the acceptable probability. Algorithm 2 works by first
checking and computing mrt from vs to A and E. Then, it
topologically calculates the mrt of the adjacent nodes of A
and E. After it computes the mrt of node I, mrt(vs, vd) is
obtained.

Three iterations of Algorithm 2 computing the results of the
maximum reaching time from vs to v including vd are
tabulated in Tables 1, 2 and 3. After the first iteration, the
retiming value associated with nodes D, F, H, and I are
shown in Column r(v) of Table 1. The values in Columns 2-8
show the probability that the mrt(vs,v), ∀v ∈ V, ranges from 1
to 6 and greater than 6 (>6), respectively. The retimed graph
associated with the retiming value in Table 1 after the first
iteration is presented in Fig. 8a. Table 2 presents the
maximum reaching time from the dummy node vs to each
node v ∈ V as well as the retiming function for each vertex
after the second iteration. Fig. 8b presents the retimed graph
corresponding to the retiming function presented in Table 2.
By computing the mrt(vs,v) of the retimed graph in Fig. 8b, it

becomes apparent that nodes B and C need to be retimed. Fig.
8c illustrates the final retimed graph in accordance with the
retiming function presented in Table 3. Note that Table 3 also
presents the final maximum reaching time and retiming value
for each vertex which satisfies the required configuration.
From this final retimed graph, one could, therefore, allocate a
minimum of five processing elements in order to compute the
graph in six time units with 80 percent confidence.

4. Resource-Constrained Scheduling

In this section, we present a probabilistic scheduling
algorithm which considers the limited number of resources.
The traditional rotation scheduling framework is extended to
handle the probabilistic environment. We call this algorithm
probabilistic rotation scheduling (PRS). Given a PG, the
algorithm iteratively optimizes the PG with respect to the
confidence probability and the number of resources.

Before presenting this algorithm, we first discuss two
important concepts that make scheduling under the
probabilistic environment different from traditional
scheduling problems. First, in the probabilistic model, a
synchronization control step is not available. A node can
begin its execution if all of its parents have already been

NECTEC Technical Journal, Vol. III, No. 11 113

executed. This is similar to the asynchronous model where
data request and handshaking signals are used to
communicate between nodes. The schedule can be viewed as
a directed graph where edges show either the data
requirement to execute a node or the order that a node can be
executed in a particular functional unit. Note that a
synchronization will be applied at the end of each iteration.
Second, the task remapping strategy for PRS should take the
probabilistic nature of the problem into account. The
following subsection discuss these concepts in more details.

4.1 Schedule Length Subject to the Confidence
The concept of mrt can be used to compute the underlying
schedule length. Hence, the conventional way of calculating
schedule length has to be redefined to include the mrt notion.
In order to do so, we update the probabilistic data flow graph
by adding the resource information and extra edges between
two nodes executed consecutively in the same functional unit
and have no data dependencies between them. This graph,
called the probabilistic task-assignment graph (PTG),
represents a schedule under the probabilistic model.

Definition 4.1. A probabilistic task-assignment graph (PTG)
G = 〈V, E, w, T, b〉, is a vertex-weighted, edge-weighted,
directed acyclic graph, where V is the set of vertices
representing tasks, E is the set of edges representing the
data dependencies between vertices, w is a edge-type
function from e ∈ E to {0,1}, where 0 represents the type
of dependency edge and 1 represents the type of flow-
control edge, Tv is a random variable representing the
computation time of a node v ∈ V, and b is a processor
binding function from v ∈ V to {PEi, 1 ≤ i ≤ n}, where PEi
is processing element i and n is the total number of
processing elements.

Figure 9. Illustrates an example of a probabilistic
task-assignment graph (PTG) where the nodes are assigned

to PE0 and PE1.

As an example, Fig. 9 shows an example of the PTG with
two functional units PE0 and PE1. Nodes B and D are
assigned to PE0. That is, b(B0 = b(D) = PE0. Meanwhile,
b(C) = b(A) = PE1. Edges consists of C A,

C D, B D, where w(e

→

→

1e

e e

1e

→ 2 → 3

→

1) = 1 and
w(e2) = w(e3) = 0. Note here that if there exist edges A B
and B → D and all of the nodes are scheduled to the same
processor, edge A D, which was a true dependence edge,

This definition assumes node v can start its execution right
after all parents finish their execution. By observing this
template, one can ascertain how long (the number of control
steps) each processing element would be idle. The template
scheduling decides where to reschedule a node using “their
degree of flexibility.”

can be ignored. Note also that removing redundancy edges is
simple and should be utilized to speed up the calculation of
mrt. In Fig. 9, edge C A is control-typed since A
now has no dependency to C but has to execute after C due to
resource constraints. Other edges represent data
dependencies. Applying the mrt algorithm to the PTG, we
can define the probabilistic schedule length. This length is
expressed in terms of confidence probabilistic as follows.

→

Definition 4.2. A probabilistic schedule length of PTG G =
〈V, E, w, T, b〉 with respect to a confidence level θ, psl(G,
θ), is the smallest computation time c such that Pr(mrt(G)
> c) < 1 - θ.

For example, consider the probability distribution of the
mrt(G) shown in table 4. Given a confidence probability θ =
0.8, the probabilistic schedule length psl(G, 0.8) is 14. This
because the smallest possible computation time is 14, where
Pr(mrt(G) > 14) < 0.2, i.e., 0.04365 + 0.02293 + 0.00875 =
0.07818 < 0.2. Therefore, with 80 percent confidence, the
computation time of G is less than 14.

4.2 Task Remapping Heuristic: Template
Scheduling

In this section, we propose a heuristic, called template
scheduling (TS), to search for a place to reschedule a task.
This remapping phase plays an important role in reducing the
probabilistic schedule length in PRS. Since the computation
time is a random variable, there is no fixed control step
within an iteration. As long as a node is placed after its
parents, any scheduling location is legal.

In template scheduling, a schedule template is computed
using the expectation of the computation time of each node.
This template implies not only the execution order, but also
the expected control step that a node can start execution. In
order to determine an expected control step, each node in a
PTG is visited in the topological order and the following is
computed:

Definition 4.3. The expected control step of node v of PTG
G = 〈V, E, w, T, b〉, Ecs(v), is computed by

Ecs(v) = max(Ecs(ui) + ETu i),

where ui → e v ∈ E, ETu represents the expected
computation time of node u and Ecs(vi) = 0 for all root
nodes vi ∈ V.

Table 4. Shows possible computation time of the mrt(G)

 8 9 10 11 12 13 14 15 16
Prob 0.00197 0.04373 0.20902 0.25140 0.23661 0.18194 0.04365 0.02293 0.00875

NECTEC Technical Journal, Vol. III, No. 11 114

Definition 4. Given a PTG G = 〈V, E, w, T, b〉, a degree of
flexibility of node u with respect to the processing element
PEi, dflex(u, i), is computed by:

dflex(u, i) = Ecs(v) - Ecs(u) – ETu,
where u v ∈ E and u and v are assigned to PE→ e

i.

Figure 10. Illustrates an example of how to obtain the
expected control step.

The degree of flexibility conveys the expected size of
available time slot within PEi. Fig. 10 shows a typical case
where node v has more than one parent. u1, u2 and u3 are
parents of node v and each of these parents has the expected
computation time 1, 4, and 3, respectively. In the same order,
the expected control steps of these nodes are 3, 4.7, and 3.7,
respectively. Therefore, the expected control step Ecs(v) =
8.7. According to Definition 4.3, the degree of flexibility of u
with respect to PE0, is 8.7 – 3 – 1 = 4.7. This value conveys
how long PE0 has to wait before v can be executed. Note that
the degree of flexibility of a node, which is executed at last
in any PE, is undefined. The following steps compute the
new G after rescheduling node v.

Algorithm 3 Rescheduling rotated nodes using the template
scheduling heuristic
Require: PTG, rescheduled node v and confidence
probability θ
Ensure: Rescheduling new PTG with shortest psl

1. Assume that all nodes in the PTG have their
expected computation times precomputed

2. ∀ node u ∈ V compute Ecs(u) and dflex(u)
3. for each of target processors (PEi) do
4. Using the maximum dflex to select node x which

 is scheduled to PEi
5. schedule v after x
6. reconstruct a new PTG (assigned with PEi) with

 this assignment
7. compare it with others PTG and get the one that

 has the best psl
8. end for

This rescheduling policy hopes that placing a node in the
processor with the expected biggest idle time slot results in

the least potential of increasing the total execution time. If a
computation time of the node is much smaller than the
expected time slot, this approach may allow the next
rescheduled node to be placed here also. This is similar to
worst-fit policy, where the scheduler strives to schedule a
node to biggest slot. In section 5, we demonstrate the
effectiveness of this heuristic over the method that
exhaustively finds the best place for a node. Note that this
exhaustive search is not performed globally, rather the search
is done locally in each remapping iteration. We call this
heuristic a local search (LS).

4.3 Rotation Phase
Having discussed the rescheduling heuristic, the following
presents the probabilistic rotation scheduling (PRS). Note
that the previous heuristic or any rescheduling heuristic can
be used as rescheduling part of this PRS algorithm. The
experiments in Section 5 show the efficacy of the PRS
framework with different rescheduling heuristics.

Algorithm 4 Probabilistic Rotation Scheduling
Require: PG and designer’s confidence probability θ
Ensure: PTG with a shortest psl

1. ∀u ∈ V compute ETu

2. Gs ⇐ find_initial_schedule {finding an initial
schedule for PG and keep it in Gs}

3. for i = 1 to 2|V| do
4. R ⇐ all roots of a DAG portion of Gs

 {these are nodes to be rotated}
5. retime each of the nodes in R
6. reschedule these nodes one by one using the

 heuristic previously presented
7. compute psl of the new graph with respect to θ
8. if psl(Gs, θ) ≤ psl (Gbest, θ) then
9. Gbest ⇐ Gs {considering that Gbest is

 initialized to Gs first}
10. end if
11. end for

In order to use template scheduling, an expected computation
time of each task will be precomputed. After that, an initial
schedule is constructed by find_initial_schedule. Note that
the algorithm for creating the initial schedule can be any
DAG scheduling, e.g., probabilistic list scheduling discussed
previously. Rotation scheduling loops for 2|V| times to
reschedule all nodes in the graph at least once. Like
traditional rotation scheduling, only nodes that have all their
incoming edges with nonzero dependency distances will be
drawn from each of these edges and placed on their outgoing
edges. Then, these rotated nodes will be rescheduled one by
one using the template scheduling technique. After all rotated
nodes are scheduled, if the resulting PTG is better than the
current one, Algorithm 4 will save the better PTG.

NECTEC Technical Journal, Vol. III, No. 11 115

Figure 11. Illustrates an example of the computation time of graph in Figure 1b.

Figure 12. Illustrates initial assignment and the corresponding execution order. (a) Static execution order. (b) PTG.

Figure 13. Illustrates the probabilistic graph after A is rotated and the template values. (a) New PTG. (b) Ecs and dflex.

Table 5. Shows possible computation time of the mrt of a PTG

 8 9 10 11 12 13 14 15 16
Prob 0.00197 0.04373 0.20902 0.25140 0.23661 0.18194 0.04365 0.02293 0.00875

4.4 Example
Let us revisited the PG example in Section 3.3 as shown in
Fig. 11a and the corresponding computation time in Fig. 11b.
The confidence probability is given as θ = 0.8. After list
scheduling is applied, the initial execution order is
constructed as shown in Fig. 12a. The corresponding PTG is
presented in Fig. 12b. Nodes A, B, H and I are assigned to
PE0, nodes E and F are scheduled PE1 and nodes C, G and D
are assigned to PE2. Edges B H and C G
and G D are flow-control edges.

→ e → e

→ e

For this assignment, the mrt of such a PTG is computed as
shown in Table 5. Therefore, with higher than 80 percent
confidence probability, psl(G, 0.8) = 14.

According to the structure of the PTG, either A or E can be
rescheduled. In the first rotation, PRS selects A to be

rescheduled. One dependency distance is moved from all
incoming edges of A and pushed to all outgoing edges of A.
The resulting retimed graph PG is shown in Fig. 13a. In this
graph, node A requires no direct data dependency from any
node. Therefore, A can be placed at any position in the
schedule. Fig. 13b shows the expected computation time, the
expected control step, and the degree of flexibility of each
node in this PTG.

Based on the values in the table from Fig. 13b, it is obvious
that an expected waiting time between B and H in PE0 where
psl can be reduced. The resulting PTG and its execution order
are shown in Fig. 14, where psl(G, 0.8) = 12. After running
PRS for 18 iterations, the shortest possible schedule length
was found in the 15th iteration. In Fig. 15, we present the
resulting schedule length of the this trial which is less than 9
with probability greater than 80 percent (psl(G, 0.8) = 9).

NECTEC Technical Journal, Vol. III, No. 11 116

Figure 14. Illustrates the PTG, execution order and its mrt
after the first rotation where psl (G, 0.8) = 12.

(a) PTG. (b) Execution order.

5. Experimental Results

In this section we perform experiments both using
nonresource and resource constrained scheduling on two
general classes of problems. The first class are real
applications which may have a combination of nodes with
probabilistic computation times and with fixed computation
times. The second are well-known DSP filter benchmarks.
Since these benchmarks contain two uniform types of nodes,
namely multiplication and addition, the basic timing
information consisting of three probability distribution are

assigned to each benchmark graphs. In order to show the
usability of the proposed algorithm, three applications are
profiled to get their probabilistic timing information. The
profiler reports the processing time requirement in these
applications and the corresponding frequency of this time
value. The frequency of timing occurences is used to obtain a
node probability distributions. A node in these graphs may
represent a large number of operations which cause the
uncertain computation time as well as operations which have
fixed timing information. Each timing information is
discretized to a smaller unit such as nanoseconds.

The DSP filter benchmarks used in these experiments include
a Biquadratic IIR filter, a 3-stage IIR filter, a fourth-order
Jaunmann wave digital filter, a fifth-order elliptic filter, an
unfolded fifth-order elliptic filter with an unfolding factor
equal to 4 (uf = 4), an all-pole lattice filter, an unfolded all-
pole lattice filter (uf = 2), an unfolded all-pole lattice filter
(uf = 6), a differential equation solver and a Volterra filter.
The rest of the benchmarks are the application for image
processing (Floyd-Steinberg), the application to search for a
solution which maximize some unknown function by using
genetic algorithm, and the famous example of the application
in the fuzzy logic area, the inverted pendulum problem. All
of the experiments were performed using SUN UltraSparc.

Table 6. Shows probabilistic retiming versus worst case traditional retimimg

θ = 0.9 θ = 0.8 Benchmark #nodes c worst
c % c %

Biquad IIR 8 78 60 23 57 26
Diff. Equation 11 118 81 31 77 35
3-stage direct IIR 12 54 44 19 41 24
All-poll Lattice 15 157 120 24 117 25
4th order WDF 17 156 116 26 112 28
Volterra 27 276 216 22 212 23
5th Elliptic 34 330 240 28 236 29
All-poll Lattice (uf=2) 45 468 350 25 346 25
All-poll Lattice (uf=6) 105 1092 811 26 806 26
5th Elliptic (uf=4) 170 1633 1185 27 1174 28
Floyd-Steinberg 13 30 23 23 21 30
Genetic application 18 202 180 11 127 37
Fuzzy application 24 19 17 11 17 11

Figure 15. Illustrates the final PG, PTG, execution order where psl(G, 0.8) = 9. (a) PG. (b) PTG. (c) Final execution order.

NECTEC Technical Journal, Vol. III, No. 11 117

Table 7. Shows probabilistic retiming versus average-case
analysis

Traditional Algorithm 2

Benchmark mrt(G r
avg) θ = 0.9 θ = 0.8

Biquad IIR 70.40 52.64 52.30
Diff. Equation 76.05 73.07 72.50
3-stage direct IIR 41.90 37.70 38.36
All-poll Lattice 114.45 111.77 111.40
4th order WDF 106.73 106.44 105.98
Volterra 204.00 202.44 202.00
5th Elliptic 233.30 228.41 227.59
All-poll Lattice (uf=2) 342.17 338.11 337.62
All-poll Lattice (uf=6) 800.51 794.02 793.39
5th Elliptic (uf=4) 800.51 794.02 793.39
Floyd-Steinberg 18.47 18.45 18.17
Genetic application 150.89 144.01 112.46
Fuzzy application 18.03 16.08 16.08

5.1 Nonresource Constrained Experiments
In each experiment, for a given confidence level θ = 1 - δ,
Algorithm 2 is used to search for the best longest path
computation time. In order to do this, the current desired
longest path computation time (c) is varied based on whether
or not a feasible solution is found. For instance, if c is too
small, the algorithm will report that no feasible solution
exists. In this case, c is increased and Algorithm 2 is
reapplied. This process will repeated, until the smallest
feasible c is found.

Table 6 shows the results for traditional retiming using worst-
case computation time assumptions (column c worst) and the
probabilistic model with two high confidence probabilities (θ
= 0.9 and 0.8). The average running time for these
experiments was determined to be below 60 seconds
including the input/output interfaces. The algorithms are
implemented in a straightforward way where array is used to
store probability distributions. Column 3 in the table presents
the optimized longest path computation times obtained from
applying traditional retiming using the worst-case
computation time for each node in the graph benchmarks. For
columns where θ = 0.9 and θ = 0.8, the probabilistic
retiming algorithm is applied to the benchmarks (G) while
each of these confidence probabilities is used as its input. The
numbers show in both columns are the given c where
Pr(mrt(G) ≤ c) ≥ θ. The value c from this requirement is the
smallest input value which Algorithm 2 can find a solution to
satisfy such a requirement. Notice that for all benchmarks the
longest path computation time with θ = 0.9 are still smaller
than the computation time in Column 3. In order to quantify
the improvement of the probabilistic retiming algorithm, the
“%” columns list the percent of computation time reductions
with respect to the value from Column 3.

Table 7 compares the probabilistic retiming algorithm to the
traditional retiming algorithm with average computation
times used for each node in the graphs. First, the probabilistic
nodes of each input graph are converted to fixed time nodes
resulting in Gavg, i.e., each node assumes its average

computation time rather than probabilistic computation time.
Traditional retiming is then applied to the resulting graph,
resulting in graph G avg . The purpose of this table is to

compare G r
avg (obtained from running traditional retiming on

G) with retimed PGs. In order to compare with the results
produced by the proposed algorithm, the placement of
dependency distance in each G avg is preserved while the
original probabilistic computation times are replaced with the
average computation times. Put another way, we transformed
each G back to a probabilistic graph. Algorithm 1 is then
used to evaluate these graphs while only the expected values
of each result are shown in the table. Columns 4 and 5
present the expected values of the results obtained from
running probabilistic retiming on each PG where the
confidence probability of 0.9 and 0.8 are considered. Note
that these results are consistently better (smaller value) than
the results obtained from running traditional retiming on each
of G r

avg . Hence, the approach of using the expected values
for each node is neither a good heuristic in the initial design
phase nor does it give any quantitative confidence to the
resulting graphs.

r

r
avg

r

r
avg

5.2 Resource-Constrained Experiments
We tested the probabilistic rotation scheduling (PRS)
algorithm on the selected filter and application benchmarks:
the fifth elliptic filter, 3 stage-IIR filter, Volterra filter,
Lattice filter, and Floyd-Steinberg, Genetic algorithm, Fuzzy
logic applications. Table 8 demonstrates the effectiveness of
our approach on both 2-adder, 1-multiplier and 2-adder, 2-
multiplier systems for those filter benchmarks. The
specification of 3 and 4 general purpose processors (PEs) are
adopted for the other three application benchmarks. The
performance of PRS is evaluated by comparing the resulting
schedule length with the schedule length obtained from the
modified list scheduling technique (capable of handling the
probabilistic graphs). We also show the effectiveness of
template scheduling (TS) by comparing its results with other
heuristics, namely, local search (LS), and as-late-as possible
scheduling (AL). The average execution times of AL and TS
are very comparable (about 12 seconds running on
UltraSparc) while LS takes much longer time and does not
give the outstanding results comparing with those from TS.

In each rescheduling phase of PRS, the LS approach strives
to reschedule a node to all possible legal location (local
search) and returns the assignment which yields the minimum
psl(G, θ). This method is simple and gives a good schedule;
however, it is time consuming and not practical to try all
possible scheduling places in every iteration of PRS.
Furthermore, a PTG needs to be temporarily updated in every
trial in order to compute the possible schedule length. On the
contrary, the AL method reduces the number of trials by
attempting to schedule a task only once at the farthest legal
position in each functional unit or processor while the TS
heuristic re-maps the scheduled node after the node with the
highest degree of flexibility in each functional unit.

NECTEC Technical Journal, Vol. III, No. 11 118

Table 8. Shows comparison of the results obtained from applying benchmarks modified list and
probabilistic rotation scheduling (using different remapping heuristics)

θ = 0.9 θ = 0.8

PRS PRS Spec. Benchmarks #nodes PL AL LS TS PL AL LS TS
 Diff. Equation 11 169 152 133 133 165 147 131 131
2 Adds. 3-stage direct IIR 12 188 184 151 151 184 179 147 147
1 Mul. All-poll Lattice 15 229 225 142 141 225 220 138 138
 Volterra 27 526 468 361 361 519 461 354 354
 5th Elliptic 34 318 298 293 293 314 294 289 289
3 PEs Floyd-Steinberg 13 42 32 27 30 38 28 28 27
 Genetic application 18 434 295 216 275 438 180 150 150
 Fuzzy application 24 52 46 45 45 52 45 43 43
 Diff. Equation 11 120 103 83 90 117 100 83 91
2 Adds. 3-stage direct IIR 12 124 120 87 87 120 110 83 82
2 Mul. All-poll Lattice 15 229 225 140 139 225 220 136 136
 Volterra 27 359 270 237 259 353 265 221 256
 5th Elliptic 34 288 288 274 271 284 274 270 267
4 PEs Floyd-Steinberg 13 42 30 26 28 38 24 24 24
 Genetic application 18 434 291 205 275 337 180 180 180
 Fuzzy application 24 49 41 38 40 47 38 35 36

Table 9. Shows comparing probabilistic rotation with traditional rotation running on
graphs with average computation times

worst case θ = 0.9 θ = 0.8 Spec. Benchmarks #nodes
L R PL PRS AVG PL PRS AVG

 Diff. Equation 11 228 180 169 133 136 165 131 131
2 Adds. 3-stage direct IIR 12 252 204 188 151 163 184 147 179
1 Mul. All-poll Lattice 15 312 204 229 141 153 225 138 149
 Volterra 27 750 510 526 361 526 519 354 519
 5th Elliptic 34 438 396 318 293 299 314 289 294
3 PEs Floyd-Steinberg 13 59 38 42 30 40 38 27 31
 Genetic application 18 500 400 434 275 416 438 180 410
 Fuzzy application 24 69 55 52 45 66 52 43 63

Columns θ = 0.8 and θ = 0.9 show the results when
considering the probabilistic situations with confidence
probabilities 0.8 and 0.9. Column “PL” presents the
probabilistic schedule length (psl) after modified list
scheduling is applied to the benchmarks. Columns “LS”,
“AL”, and “TS” show the resulting psl, after running PRS
against those benchmarks using the remapping heuristics LS,
AL and TS respectively. Among these three heuristics, the TS
scheme produces better results than AL which uses the
simplest criteria. Further, it yields as good as or sometimes
even better results than given by the LS approach, while TS
taking less time to select a re-scheduled position for a node.
This is because in each iteration the LS method finds the
local optimal place. However, scheduling nodes to these

positions does not always result in the global optimal
schedule length.

In Table 9, based on the system that has 2 adders and 1
multiplier (for filter benchmarks) and 3PEs (for application
benchmarks), we present the comparison results obtained
from applying the following techniques to the benchmarks:
modified list scheduling, traditional rotation scheduling,
probabilistic rotation scheduling using template scheduling
heuristic, and traditional rotation scheduling considering
average computation times. Columns “L” and “R” show the
schedule length obtained from applying modified list
scheduling and traditional rotation scheduling respectively to
the benchmarks where all probabilistic computation times are
converted into their worst-case computation times.

NECTEC Technical Journal, Vol. III, No. 11 119

Obviously, considering the probabilistic case gives the
significant improvement of the schedule length over the
worst case scenario.

Column “PL” presents the initial schedule lengths obtained
from using the modified list scheduling approach. The results
in column “PRS” are obtained from Table 8 (PRS using
template scheduling heuristic). In column “AVG”, the psls
are computed by using the graphs (PTGs) retrieved from
running traditional rotation to the benchmarks where the
average computation time is assigned to each node. These
results demonstrate that considering the probabilistic
situation while performing rotation scheduling can
consistently give better schedules than considering only
worst-case or average-case computation times.

6. Conclusion

We have presented scheduling and optimization algorithms
which operate in probabilistic environment. A probabilistic
data-flow graph is used to model an application which takes
this probabilistic nature into account. The probabilistic
retiming algorithm is used to optimize the given application
when nonresource constrained environments are assumed.
Given an acceptable probability and a desired longest path
computation time, the algorithm reduces the computation
time of the given probabilistic graph to the desired value. The
concept of maximum reaching time is used to calculate
timing values of the probabilistic graph. When a limited
number of processing elements is considered, the
probabilistic rotation scheduling algorithm (where the
probabilistic concept and loop pipelining are integrated to
optimize a task schedule) is proposed. Based on the
maximum reaching time notion, the probabilistic schedule
length is used to measure the total computation time of these
tasks being scheduled in one iteration. Given a probabilistic
graph, the schedule is constructed by using the task-
assignment probabilistic graph and the probabilistic schedule
length is computed with respect to a given confidence
probability θ. Probabilistic rotation scheduling is applied to
the initial schedule in order to optimize the schedule. It
produces the best optimized schedule with respect to the
confidence probability. The remapping heuristic, template
scheduling, is incorporated in the algorithm in order to find
the scheduling position for each node.

Acknowledgment

The research was partially supported by U.S. National
Science Foundation Career Grant MIP 95-01006.

References

[1] A. Aiken and A. Nicolau, “Development Environment for
Horizontal Micronode,” IEEE Trans. Software Eng., vol. 14,
Feb. 1987.

[2] A. Aiken and A. Nicolau, “Optimal Loop Parallelization,”
Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation, pp. 308-317, June 1988.

[3] U. Banerjee, “Unimodular Transformations of Double
Loops,” Proc. Workshop Advances in Languages and
Compilers for Parallel Processing, pp. 192-219, Aug 1990.

[4] P.P. Chang et al., “Impact: An Architectural Framework
for Multiple Instruction Issue Processor,” Proc. 18th Int’l
Symp. Computer Architecture, pp. 266-275, 1991.

[5] L. Chao, A. LaPaugh, and E. Sha, “Rotation Scheduling:
A Loop Pipelining Algorithm,” Proc. 30th Design
Automation Conf., pp. 566-572, June 1993.

[6] L. Chao and E. Sha, “Static Scheduling for Synthesis of
DSP Algorithms on Various Models,” J. VLSI Signal
Processing, pp. 207-223, Oct. 1995.

[7] A.E. Eichenberger and E.S. Davidson, “Stage Scheduling:
A Technique to Reduce the Register Requirements of a
Modulo Schedule,” Proc. 28th Int’l Symp. Microarchitecture,
pp. 338-349, Nov. 1995.

[8] A.E. Eichenberger, E.S. Davidson, and S.G. Abraham,
“Minimum Register Requirements for a Modulo Schedule,”
Proc. 27th Int’l Symp. Microarchitecture, pp. 75-84, Nov.
1994.

[9] J.A. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Trans. Computers, vol. 30,
no. 7, pp. 478-490, July 1981.

[10] I. Foster, Designing and Building Parallel Program:
Concepts and Tools for Parallel Software Engineering.
Addison-Wesley, 1994.

[11] R.A. Kamin, G.B. Adams, and P.K. Dubey, “Dynamic
List-Scheduling with Finite Resources,” Proc. 1994 Int’l
Conf. Computer Design, pp. 140-144, Oct. 1994.

[12] I. Karkowski and R.H.J.M. Otten, “Retiming
Synchronous Circuitry with Imprecise Delays,” Proc. 32nd
Design Automation Conf., pp. 322-326, 1995.

[13] A.A. Khan, C.L. McCreary, and M.S. Jones, “A
Comparison of Multiprocessor Scheduling Heuristic,” Proc.
1994 Int’l Conf. Parallel Processing, vol. II, pp. 243-250,
1994.

[14] D. Ku and G. De Micheli, High-Level Synthesis of
ASICS under Timing and Synchronization Constraints.
Kluwer Academic, 1992.

[15] D. Ku and G. De Micheli, “Relative Scheduling under
Timing Constraints: Algorithm for High-Level Synthesis,”
IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, pp. 697-718, June 1992.

[16] M. Lam, “Software Pipelining,” Proc. ACM SIGPLAN
’88 Conf. Programming Language Design and
Implementation, pp. 318-328, June 1988.

[17] D.M. Lavery and W.W. Hwu, “Unrolling-Based
Optimization for Modulo Scheduling,” Proc. 28th Int’l Symp.
Microarchitecture, pp. 327-337, Nov. 1995.

[18] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous
Circuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

NECTEC Technical Journal, Vol. III, No. 11 120

[19] B.P. Lester, The Art of Parallel Programming.
Englewood Cliffs, N.J.: prentice Hall, 1993.

[20] W. Li and K. Pingali, “A Singular Loop Transformation
Framework Based on Non-Singular Matrices,” Technical
report TR 92-1294, Cornell Univ., Ithaca, N.Y., July 1992.

[21] J. Llosa, M. Valero, and E. Ayguadé, “Heuristics for
Register-Constrained Software Pipelining,” Proc. 29th Int’l
Symp. Microarchitecture, pp. 250-261, Dec. 1996.

[22] K.K. Parhi and D.G. Messerschmit, “Static Rate-
Optimal Scheduling of Iterative Data-Flow Program via
Optimum Unfolding,” IEEE Trans. Computers, vol. 40, no.
2, pp. 178-195, Feb. 1991.

[23] N.L. Passos, E. Sha, and S.C. Bass, “Loop Pipelining for
Scheduling Multi-Dimensional Systems via Rotation,” Proc.
31st Design Automation Conf., pp. 485-490, June 1994.

[24] B.R. Rau and J.A. Fisher, “Instruction-Level Parallel
Processing,” J. Supercomputing, vol. 7, pp. 9-50, July 1993.

[25] B.R. Rau and C.D. Glaeser, “Some Scheduling
Techniques and a Easily Schedulable Horizontal Architecture
for High Performance Scientific Computing,” Proc. 14th
Ann. Workshop Microprogramming, pp. 183-198, Oct. 1981.

[26] B. Ramakrishna Rau, “Iterative Modulo Scheduling: An
Algorithm for Software Pipelining Loops,” Proc. 27th Ann.
Int’l Symp. Microarchitecture, pp. 63-74, Nov. 1994.

[27] M.E. Wolfe, High Performance Compilers for Parallel
Computing, chapter 9, Redwood City, Calif.: Addison-
Wesley, 1996.

[28] M.E. Wolfe and M.S. Lam, “A Loop Transformation
Theory and Algorithm to Maximize Parallelism,” IEEE
Trans. Parallel and Distributed Systems, vol. 2, no. 4, pp.
452-471, Oct. 1991.

[29] L.A. Zadeh, “Fuzzy Sets as a Basis for a Theory of
Possibility,” Fuzzy Seta and Systems, vol. 1, pp. 3-28, 1978.

Sissades Tongsima received the BEng
degree in industrial instrumental engineering
in 1991 from Kink Mongkut Institute of
Technology, Ladkrabang, Thailand. In 1992,
he was awarded the Royal Thai Government
Scholarship to pursue his studies in computer
science, majoring in the parallel and

distributed computing area. He obtained his MS and PhD
degrees from the Department of Computer Science and
Engineering, University of Notre Dame, in 1995 and 1999,
respectively. Dr. Tongsima’s research interests while
studying at Notre Dame include data scheduling and
partitioning on parallel and distributed systems, high-level
synthesis, loop transformations, rapid prototyping, and fuzzy
systems. Upon completing of his studies, he returned to
Thailand, where, in June 1999, he joined the National
Electronics and Computer Technology Center (NECTEC).
He is currently a researcher in the High Performance
Computing Division at NECTEC.

Edwin H.-M. Sha (S’88-M’92) received the
MA and PhD degrees from the Department
of Computer Science, Princeton University,
Princeton, New Jersey, in 1991 and 1992,
respectively. Since August 1992, he has been
with the University of Notre Dame, Notre
Dame, Indiana. He is now an associate

professor and the associate chairman of the Department of
Computer Science and Engineering. His research areas
include multimedia, memory systems, parallel and pipelined
architectures, loop transformations and parallelizations,
software tools for parallel and distributed systems, high-level
synthesis in VLSI, fault-tolerant computing, VLSI processor
arrays, and hardware and software co-design.

He had published more than 100 research papers in referred
conferences and journals during the past seven years. In
1994, he was the program committee chair for the Fourth
IEEE Great lakes Symposium on VLSI and he served as the
program committee cochair for the 2000 ISCA 13th
International Conference on Parallel and Distributed
Computing Systems. He has served on program committees
for many international conferences. He has served as an
associate editor for several journals. He received the Oak
Ridge Association Foundation CAREER Award in 1995. He
was also invited to be a guest editor for special issue on Low
Power Design of the IEEE Transactions on VLSI Systems and
is now serving as an editor for the IEEE Transactions on
Signal Processing. He received the CSE Undergraduate
Teaching award in 1998. He is a member of the IEEE.

Chantana Chantrapornchai received her
PhD degree in computer science and
engineering from the University of Notre
Dame in 1999. She received her bachelor’s
degree in computer science from
Thammasart University, Bangkok, Thailand,
in 1992 and her MS degree in computer

science from Northeastern University, Boston, in 1994.
Currently Dr. Chantrapornchai is a faculty member in the
Department of Mathematics, Faculty of Science, Silpakorn
University, Thailand. Her research interests include high-
level synthesis, rapid prototyping, and fuzzy systems.

David R. Surma received the BS degree in
electrical engineering from Valparaiso
University, Valparaiso, Indiana, where he
was a Presidential Scholar, in 1985. He
received MS degree in electrical engineering
with a specialty in computer engineering
from the University of Arizona, Tucson, in

1989. In 1998, he was awarded the PhD degree in computer
science and engineering from the University of Notre Dame,
Notre Dame, Indiana. From 1990-1996, he taught electrical
and computer engineering at Valparaiso University. Since
then he has taught computer science at Indiana University
and has held a visiting assistant professorship at Notre Dame.
Currently, He is an assistant professor of computer science at
Valparaiso University. His research interests include parallel
and distributed systems, communication and data scheduling,
computer networks and real-time systems. He is a member of
the IEEE.

NECTEC Technical Journal, Vol. III, No. 11 121

Nelson Luiz Passos received the BS degree
in electrical engineering, with specialization
in telecommunications, from the University
of Sao Paulo, Brazil, in 1974. He received
the Ms degree in computer science from the
University of North Dagota, Grand Forks, in
1992, and the PhD degree in computer

science and engineering from the University of Notre Dame,
Indiana, in 1996.

From 1974 to 1990, he worked at Control Data Corporation.
Since1996, he has been at Midwestern State University,
Wichita Falls, Texas, where he is currently an associate
professor with the Department of Computer Science. His
research interests include parallel processing, VLSI design,
loop transformations.

Dr. Passos was awarded the Professional Excellence and Bill
Norris Shark Club Awards at Control Data Corporation.
While with the Fellowship. He received a U.S. National
Science Foundation grant award in 1997 to support to new
research om multidimensional retiming. He is a member of
the IEEE.

	Table 5. Shows possible computation time of the mrt of a PTG
	Table 6. Shows probabilistic retiming versus worst case traditional retimimg

