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ABSTRACT - One of the difficulties in high-level synthesis and compiler optimization is obtaining a good 
schedule without knowing the exact computation time of the tasks involved.  The uncertain computation 
times of these tasks normally occur when conditional instructions are employed and/or inputs of the tasks 
influence the computation time. The relationship between these tasks can be represented as a data-flow 
graph where each node models the task associated with a probabilistic computation time. A set of edges 
represents the dependencies between tasks.  In this research, we study scheduling and optimization 
algorithms taking into account the probabilistic execution times. Two novel algorithms, called probabilistic 
retiming and probabilistic rotation scheduling, are developed for solving the underlying non-resource and 
resource constrained scheduling problems respectively.  Experimental results show that probabilistic 
retiming consistently produces a graph with a smaller longest path computation time for a given confidence 
level, as compared with the traditional retiming algorithm that assumes a fixed worst-case and average-case 
computation times.  Furthermore when considering the resource constraints and probabilistic environments, 
probabilistic rotation scheduling gives a schedule whose length is guaranteed to satisfy a given probability 
requirement. This schedule is better than schedules produced by other algorithms that consider worst-case 
and average-case scenarios. 
KEYWORDS - Scheduling, loop pipelining, probabilistic approach, retiming, rotation scheduling. 

1. Introduction 

In many practical applications such as interface systems, 
fuzzy systems, artificial intelligence systems, and others, the 
required tasks normally have uncertain computation times 
(called uncertain or probabilistic tasks for brevity).  Such 
tasks normally contain conditional instructions and/or 
operations that could take different computation times for 
different inputs.  A dynamic scheduling scheme may be 
considered to address the problem; however, the decision of 
the run-time scheduler which depends on the local on-line 
knowledge may not give a good overall schedule. Although 
many static scheduling techniques can thoroughly check for 
the best assignment for dependent tasks, existing methods are 
not able to deal with such uncertainty.  Therefore, either 
worst-case or average-case computation times for these tasks 
are usually assumed. Such assumptions, however, may not be 
applicable for the real operating situation and may result in 
an inefficient schedule. 

For iterative applications, statistics for the uncertain tasks are 
not difficult to collect.  In this paper, two novel loop 
cheduling algorithms, probabilistic retiming (PR) and 

probabilistic rotation scheduling (PRS), are proposed to 
statically schedule these tasks for non-resource (assume 
unlimited number of target processors) and resource 
constrained (assume limited number of target processors) 
systems respectively.  These algorithms expose the 
parallelism of the probabilistic tasks across iterations as well 
as take advantage of the inherent statistical data.  For a 
system without resource constraints, PR can be applied to 
optimize the input graph (i.e., reduce the length of the longest 
path of the graph such that the probability of the longest path 
computation time being less than or equal to some given 
computation time, c, is greater than or equal to a given 
confidence probabilityθ).  The resulting graph implies a 
schedule for the non-resource constrained system where the 
longest path computation time determines its schedule length. 
On the other hand, the PRS algorithm is used to schedule 
uncertain tasks to a fixed number of multiple processing 
elements.  It produces a schedule length from the given graph 
and incrementally reduces the length so that the probability of 
it being less than the previous length is greater than or equal 
to the given confidence probability. 
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Figure 1. Illustrates a sample code segment, the corresponding PG and its computation time, and the retimed graph. 
(a) Code segment. (b) PG. (c) Timing information. (d) Retimed PG. 

 
 

In order to be compatible with the current high performance 
parallel processing technology, we assume that 
synchronization is required at the end of each iteration. Such 
a parallel computing style is also known as synchronous 
parallelism [19], [10].  Both PR and PRS take an input 
application which can be modeled as a probabilistic data-flow 
graph (PG), which is a generalized version of a data-flow 
graph (DFG) where a node corresponds to a task (a collection 
of statements), and a set of edges representing dependencies 
between these tasks and determine a schedule. The loop-
carried dependences (dependency distances) between tasks in 
different iterations are represented by short bar lines on the 
corresponding edges.  Since the computation times of the 
nodes can be either fixed or varied, a probability model is 
employed to represent the timing of the task. 

Fig.1b shows an example of a PG consisting of four nodes. 
Note that such a graph models the code segment presented in 
Fig. 1a, where, for example, A in the PG corresponds to A1 
and A2 of the code segment. Two bar lines on the edge 
between nodes D and A represent the dependency distances 
between these two nodes. The computation time of nodes A 
and C are known to be fixed (2 time units).  In this code, the 
uncertainty occurs in the computation of nodes B and D. 
Assume that each arithmetic operation and the assignment 
operation (=) take 1 time unit. Furthermore, the computation 
time of the comparison and random number generating 
operations are assumed negligible.  Hence, it may take either 
4 or 2 time units to execute node B. Put another way, about 
20 percent of the time (51 out of 256), statement B2 will be 
executed and node B  will take 4 time units; otherwise node  
B  takes only 2 time units ( B3  has only one operation). 
Likewise, approximately 25 percent (64 out of 256), node D 
takes 4 time units, and about 75 percent, it will take 2 time 
units. Each entry in Fig. 1c shows a probability associated 
with each node's possible computation time (the probability 
distribution). By taking into account these varying timing 
characteristics, the proposed technique can be applied to a 
wide variety of applications in high-level synthesis and 
compiler optimization. 

Considerable research has been conducted in the area of 
finding a schedule of a directed-acyclic graph (DAG) for 
multiple processing systems. (Note that DAGs are obtained 

from DFGs by ignoring edges of a DFG containing one or 
more dependency distances.)  Many heuristics have been 
proposed to schedule DAGs, e.g., list scheduling, graph 
decomposition [13], [11], etc.  These methods, however, 
consider neither exploring the parallelism across iterations 
nor addressing the problems of probabilistic tasks. 

For instruction level parallelism (ILP) scheduling, trace 
scheduling [9] is used to globally schedule DAGs by 
rearraging some operations in the graphs. Percolation 
scheduling is used in a development environment [1] for 
microcode compaction, i.e., parallelism extraction of 
horizontal microcode. Nevertheless, the graph model used in 
these techniques does not reflect the uncertainty in node 
computation times.  In the class of global cyclic scheduling, 
software pipelining [16] is used to overlap instructions, 
whereby the parallelism is exposed across iterations.  This 
technique, however, expands the graph by unfolding or 
unrolling [22] it resulting in a larger code size. Loop 
transformations are also common techniques used to 
construct parallel compilers. They restructure loops from the 
repetitive code segment in order to reduce the total execution 
time of the schedule [2], [3], [20], [27], [28]. These 
techniques, however, do not consider that the target systems 
have limited number of processors or that task computation 
times are uncertain. 

Modulo scheduling [24], [25], [26] is a popular technique in 
compiler design for exploiting ILP in loops which results in 
optimized codes. This framework specifies a lower bound, 
called initiation interval (II), to start with and strives to 
schedule nodes based on such knowledge.  Much research 
was introduced to improve and/or expand the capability of 
modulo scheduling. For example, research was presented 
which improved modulo scheduling by producing schedules 
while considering limited number of registers [7], [8], [21]. 
In [17], a combination of modulo scheduling and loop 
unrolling was introduced and applied in the IMPACT 
compiler [4]. These ILP approaches, however, are limited to 
solving problems without considering uncertain computation 
times (probabilistic graph model). 

Some research considers the uncertainty inherit in the 
computation time of nodes.  Ku and De Micheli [14], [15] 
proposed a relative scheduling method which handles tasks 
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with unbounded delays. Nevertheless, their approach 
considers a DAG as an input and does not explore the 
parallelism across iterations. Furthermore, even if the 
statistics of the computation time of uncertain nodes is 
collected, their method will not exploit this information. A 
framework that is able to handle imprecise propagation 
delays is proposed by Karkowski and Otten [12]. In their 
approach, fuzzy set theory [29] was employed to model the 
imprecise computation times. Although their approach is 
equivalent to finding a schedule of imprecise tasks to a non-
resource constrained system, their model is restricted to a 
simple triangular fuzzy distribution and does not consider 
probability values. 

For scheduling under resource constraints, the rotation 
scheduling technique was presented by Chao et al. [5], [6] 
and was extended to handle multi-dimensional applications 
by Passos et al. [23]. Rotation scheduling attempts to pipeline 
a loop by assigning nodes from the loop to the system with a 
limited number of processing elements. It implicitly uses 
traditional retiming [18] in order to reduce the total 
computation time of the nodes along the longest paths (also 
called the critical paths), in the DFG.  In other words, the 
graph is transformed in such a way that the parallelism is 
exposed but the behavior of the graph is preserved.  In this 
paper, the rotation scheduling technique is extended so that it 
can deal with uncertain tasks. 

Since the computation time of a node in a PG is a random 
variable, the total computation time of this graph is also a 
random variable.  The concept of a control step (the 
synchronization of the tasks “within” each iteration) is no 

longer applicable.  A schedule conveys only the execution 
order or pattern of the tasks being executed in a functional 
unit and/or between different units. In order to compute the 
total computation time of this ordering, a probabilistic task-
assignment graph (PTG) is constructed.  A PTG is obtained 
from a PG in which non-zero dependency distance edges are 
ignored and each node is assigned to a specific functional 
unit in the system.  The PTG also contains additional edges, 
called flow-control edges where a connection from u to v 
means that u is executed immediately before v using the same 
functional unit. Note that in the non-resource constrained 
scenario, the PTG will be the DAG portion of the PG (a 
subgraph that contains only no dependency distance edges). 

Let us use the example in Fig. 1b. Assume that the term 
longest path computation time entails finding the maximum 
of the summation of computation times of nodes along paths 
which contain no dependency distances. After examining all 
possible longest paths of this graph, it is likely (60 percent) 
that its longest path computation time is less than or equal to 
8. The details of how this value is determined is given in 
Section 3. Note that if all nodes in this graph are assigned 
their worst-case values, the longest path computation time (or 
schedule length for non-resource constrained systems) of this 
graph will be 10.  One might wish to reduce the longest path 
of this graph in nearly all cases, for example reducing the 
chance of the clock period being greater than 6.  By applying 
probabilistic retiming, the longest path computation time of 
the graph may be improved with respect to the given 
constraint. The modified graph after retiming is shown in Fig. 
1d. The longest path computation time of this graph is less 
than than or equal to 6 with 20 percent chance. 

 

 

 

 

 

 

 
 

Figure 2. Illustrates an example of PTG, its corresponding repeated pattern, and the static execution order. 
(a) The PTG. (b) Initial execution pattern. (c) Schedule. 

 

 

 

 

 

 

 
 

Figure 3. Illustrates the corresponding retimed PG and the repeated pattern after changing iteration window. 
(a) Rotate A. (b) Reshaping iteration window. 
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If we need to schedule nodes from the PG to two 
homogeneous functional units, a possible PTG can be 
constructed as shown in Fig. 2a. Since the input graph is 
cyclic, an execution pattern of this PTG is repeated and the 
synchronization is applied at the end of each iteration, as 
shown in Fig. 2a. The solid edges in this PTG represent those 
zero dependency distance edges, called dependency edges, 
from the input graph (see Fig. 1b). In this figure, nodes A, B 
and D are assigned to PE0 and node C is bound to PE1. Note 
that D is implicitly executed after A; therefore, the direct edge 
from A to D from the original input graph can be omitted. A 
corresponding static schedule which shows only one iteration 
from the execution pattern is shown in Fig. 2c. 

The resulting longest path computation time of the PTG is 
less than 9 units with 90 percent certainty. This longest path 
timing and its probability are also known as a schedule length 
for resource constrained systems. We can improve the 
resulting schedule length by applying our probabilistic 
rotation scheduling algorithm to the PG and its PTG. In this 
case the algorithm first selects the root node A to be 
rescheduled. Then one dependency distance from the 
incoming edges of node A is moved to all its outgoing edges. 
Fig.3a. shows the resulting transformation graph of the PG. 
This new graph will be used as a reference to later update the 
PTG. The new execution pattern is equivalent to reshaping 
the iteration window as presented in Fig. 3b. 

 

 

 

 

 

Figure 4. Illustrates the resulting PTG and its execution 
order after rescheduling A. (a) PTG. (b) Static execution 

order. 

By applying the PRS algorithm, node A from the next 
iteration (see Fig. 3b.) is introduced to the static execution 
pattern. Note that node A has no inter-iteration dependencies 
associated with it. Therefore, A can be rescheduled to any 
available functional unit.  One possible schedule is to assign 
node A immediately after node C in PE1. The resulting PTG 
and the new execution order are shown in Fig. 4a and 4b, 
respectively.  The dotted arrow from C to A in this new PTG 
represents the flow-control edge. For this PTG, the resulting 
schedule length will be less than seven with higher than 90 
percent confidence. 

The remainder of this paper is organized as follows. Section 2 
presents the graph model used in this work. Required 
terminology and fundamental concepts are also presented. 
Section 3 discusses probabilistic retiming and the algorithm 
for computing a total computation time of a probabilistic 
graph. The probabilistic rotation scheduling algorithm and 
the supported routines will be discussed in Section 4. 
Experimental results are discussed in Section 5. Finally, 
Section 6 draws conclusions of this research. 

2. Preliminaries 

In this section, the graph model which is used to represent 
tasks with uncertain computation times is introduced. 
Terminology and notations relevant to this work are also 
discussed. We begin by examining a DFG that contains tasks 
with uncertain computation time which can be modeled as a 
probabilistic graph (PG). The following gives the formal 
definition for such a graph. 

Definition 2.1. A probabilistic graph (PG) is a vertex-
weighted, edge-weighted, directed graph G = 〈 V,E,d,T 〉 , 
where V  is the set of vertices representing tasks, E is the 
set of edges representing the data dependencies between 
vertices, d is a function from E to the set of non-negative 
integers, representing the number of dependency distance 
on an edge, and Tv  is a random variable representing the 
computation time of a node v ∈  V. 

Note that traditional DFGs are a special case of PGs where all 
probabilities equal one. Each vertex v ∈V is weighted with a 
probability distribution of the computation time, given by Tv, 
where Tv is a discrete random variable corresponding to the 
computation time of v such that Σ∀x Pr(Tv = x) = 1. The 
notation Pr(Tv = x) is read “the probability that random 
variable T  assumes value x''.  The probability distribution of 
T is assumed to be discrete in this paper. The granularity of 
the resulting probability distribution, if necessary, depends on 
the needed degree of accuracy. 

An edge e ∈ E from u to v, u, v ∈ V, is denoted by 
u v and a path p starting from u and ending at v is 

indicated by the notation u

→ e

p

~ >v. The number of dependency 
distances of path p(d(p)), p = v0 v→ 0e

→ 1e

→5e

1 → 1e

→ 2e

→ 7e

. . . 

 → −1ke

→ 3e

vk is d(p) = ∑ i  d(e1
0

−
=

k
i). As an example, Fig. 1b 

has the set of edges E = {A B, A C, 

A D, B D, C D, D A}. 
The number of dependency distances on each edge e ∈ E is 
given by d(e), where, for i = 1,…, 6, d(e

 → 4e 

i) = 0 and d(e7) = 2. 

The execution order or execution pattern of a PG are 
determined by the precedence relations in the graph. During 
one iteration of the graph each vertex in the execution order 
is computed exactly one time. Multiple iterations are 
identified by index i, starting from 0. Inter-iteration 
dependencies are represented by weighted edges or 
dependency distances. For any iteration j, an edge e from u to 
v with dependency distance d(e) conveys that the 
computation of node v at iteration j depends on the execution 
of node u at iteration j - d(e). An edge with no dependency 
distances represents a data dependency within the same 
iteration. A legal data flow graph must have strictly positive 
dependency distance cycles, i.e., the summation of the d(e) 
along any cycle cannot be less than or equal to zero. 
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2.1 Retiming Overview 
Retiming operations rearrange registers in a circuit or 
dependency distances in a data-flow graph in such a way that 
the behavior of the circuit is preserved while achieving a 
faster circuit. Traditionally, retiming [18] optimizes a 
synchronous circuit (graph) G = 〈V, E, d, t〉 which has non-
probabilistic functional elements, i.e., each of the vertices v ∈ 
V is associated with a fixed numerical timing value. The 
optimization goal is normally to reduce the clock period or 
cycle period Φ(G) (also known as longest path computation 
time). The cycle period represents the execution time of the 
longest path (referred to as the critical path) that has all zero 
dependency distance edges. It is defined by the equations  

Φ(G) = max{t(p) : d(p) = 0}, where                                              
p = v0 → 0e

k
0=

v1 → 1e . . .  → −1ke

1
0

−
=

vk ,                        
t(p) = ∑ i t(vi), and d(p) = ∑ k

i d(ei). 

Retiming of a graph G = 〈V, E, d, t〉 is a transformation 
function from vertices to the set of integers, r : Va Z . The 
retiming function describes the movement of dependency 
distances with respect to the vertices so as to transform G into 
a new graph   Gr = 〈V, E, dr, t〉, where dr represents the 
number of dependency distances on the edges of Gr. The 
positive (or negative) value of the retiming function 
determines the movement of the dependency distances. 
During retiming the same number of dependency distances is 
pushed from all incoming (outgoing) edges of a node to all 
outgoing (incoming) edges. If a single dependency distance is 
pushed from all incoming edges of node u ∈ V to all outgoing 
edges of node u, then r(u) = 1. Conversely, if one dependency 
distance is pushed from all outgoing to all incoming edges of 
u, then r(u) = -1. The absolute value of the retiming function 
conveys the number of dependency distances that are pushed. 
An algorithm to find a set of retiming functions to minimize 
the clock period of the graph presented in [18] is a 
polynomial time algorithm which has the time complexity of 
O(|V| |E| log |V|). 

 

 

 

 

 
 
 

Figure 5. Illustrates retiming transformations ((a) before and 
(b) after retiming) where dotted edges represent the critical 

path. 

Consider Fig. 5a, which illustrates a simple graph with four 
vertices, A, B, C and D. The numbers next to the vertices in 
the figure represent the required computation times. Fig. 5b 
represents a retimed version of Fig. 5a where r(B) = r(C) = 1, 
r(A) = 2, and r(D) = 0. In this case, the movement of 
dependency distances is as follows: r(A) = 2 is equivalent to 
removing two dependency distances from the incoming edge 

of vertex A, D A and adding them onto edges 
A B, A C, and A D. The retiming 
functions for nodes C and B are r(B) = r(C) = 1. This means 
that one dependency distance from A B is pushed 
through vertex B to edge B D. Similarly, one 
dependency distance from edge A C is pushed 
through vertex C to C D. An equivalent set of 
retimings in Fig. 5b is r(B) = r(C) = -1,         r(D) = -2, and 
r(A) = 0. This equivalent set of retimings produces the same 
graph by pushing the dependency distances backward 
through nodes D, B and C, instead of forward through nodes 
A, B and C. The dotted lines in Fig. 5a represent the critical 
path of the graph, for which Φ(G) = 5. After retiming, the 
critical path becomes Φ(G) = 3, as illustrated by the dotted 
line in Fig. 5b. 

→ e

→ e→ e → e

 e

→ e

→ e

→

→ e

The following summarizes some essential properties of the 
retiming transformation: 

1. r is a legal retiming if dr(e)  0, ∀e ∈ E. ≥
2. For an edge u v, where u, v ∈ V, → e

dr(e) = dr(e) + r(u) - r(v). 

3. For a path u
p

~ > v, where u, v ∈ V, 
dr(p) = dr(p) + r(u) - r(v). 

4. In any directed cycle (l) of G and Gr, dr(l) = d(l) > 0. 

Property 1 guarantees that the retimed graph will not have 
any edge containing a negative number of dependency 
distances. Properties 2 and 3 explain the movement of such 
distances. If r(v), v ∈ V, has a positive value, the distances 
will be deleted from the incoming edge(s) of v and inserted 
onto the outgoing edge(s), and vice versa if r(v) has the 
negative value.  Finally, Property 4 ensures that the number 
of dependency distances in any loop of the graph remains 
constant. That requires that all cycles have at least one 
dependency distance. Since retiming is an optimization 
technique which is subject to unlimited number of target 
resources, the resulting longest path computation time after 
the transformation is the underlying schedule length. 
Consider only a DAG part of the retimed graph where edges 
with nonzero dependency distances in the retimed graph are 
ignored. The iteration boundaries of this schedule will be at 
the root nodes (beginning of the iteration) and at the leaf 
nodes (end of the iteration). 

2.2 Rotation Scheduling 
In [5], Chao et al. proposed an algorithm, called rotation 
scheduling, which uses the retiming algorithm to deal with 
scheduling a cyclic DFG under resource constraints. The 
input to the rotation scheduling algorithm is a DFG and its 
corresponding static schedule, i.e., a synchronized order of 
the nodes in the DFG. Rotation scheduling reduces the 
schedule length (the number of control steps needed to 
execute one iteration of the schedule) by exploiting the 
parallelism between iterations. This is accomplished by 
shifting the scope of a static schedule in one iteration, called 
the iteration window, down by one control step. Looking at a 
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static iteration, rotation scheduling analogously rotates tasks 
from the top of the schedule of each iteration down to the 
end. This process is equivalent to retiming those tasks (nodes 
in the DFG) in which one dependency distance will be 
deleted from all their incoming edges and added to all their 
outgoing edges resulting in an intermediate retimed graph. 
Once the parallelism is extracted, the algorithm reassigns the 
rotated nodes to new positions so that the schedule length is 
shorter. 

As an example, the cyclic DFG in Fig. 6a is to be scheduled 
using two processing elements. Fig. 6b presents one possible 
static schedule for such a graph. By using rotation 

scheduling, this schedule can be optimized. First, the 
algorithm uses node A from the next iteration. The original 
graph is retimed by r(A) = 1, i.e., one dependency distance 
from E A is moved to all outgoing edges of A (see 
Fig. 6c). By doing so, node A now can be executed at any 
control step in this new iteration window. Assume that 
rotation scheduling uses a remapping strategy that places 
node A immediately after node C in PE

→ e

1. The resulting static 
schedule length is then reduced by one control step as shown 
in Fig. 6d. In Section 4, the concept of the schedule length 
and the remapping strategy will be extended to handle 
probabilistic inputs. 

 
 
 
 
 
 

 
 
 
 

Figure 6. Illustrates an example to represent how rotation scheduling optimizes the underlying schedule length. 
(a) Cyclic DFG. (b) Static schedule. (c) Retimed. (d) Resulting schedule. 

 
3. Nonresource Constrained Scheduling 

Assuming there are infinite available resources, one can 
optimize a PG with respect to a desired longest path 
computation time and confidence level, i.e., attempt to reduce 
the longest path computation time of the graph. The 
distribution of dependency distances in the PG is done 
according to a probabilistic timing constraint where the 
probability of obtaining the timing result (longest path 
computation time) being less than or equal to a given value c 
is greater than some confidence probability value θ. This 
resulting timing information is essentially the schedule length 
of the nonresource constrained problem. This section presents 
an efficient algorithm for optimizing a probabilistic graph 
with respect to a desired computation time (c) and its 
corresponding confidence probability (θ). In order to evaluate 
the modified graph, we need to know the probability 
distribution associated with its computation time. The 
remaining subsections discuss these issues. 

3.1 Computing Maximum Reaching Time 
Let Gdag be the DAG portion (the subgraph that has only 
edges with no dependency distances) of a probabilistic graph 
G. Assume that two dummy nodes, vs and vd, are added to 
Gdag, where vs connects to all source nodes (roots) and vd is 
connected by all sink nodes (leaves). Traditionally, the 
longest path computation time of a graph is computed by 

maximizing the summation of computation times of nodes 
along the critical (longest) paths between these dummy 
nodes. Likewise, for a probabilistic graph, we can compute 
the summation of the computation time for each path from vs 
to vd in the graph.  In this case the largest summation value is 
called the maximum reaching time or mrt of the graph. The 
mrt of a PG exhibits a possible longest path computation time 
of the graph and its associated probability. Therefore, unlike 
the traditional approach, the summation and maximum 
functions of computation time along the paths in a PG 
become functions of multiple random variables. 

To compute an mrt of a PG, we need to modify the graph so 
that vs and vd are connected to the DAG portion of the 
original graph. Formally, a set of zero dependency distance 
edges is used to connect vertex vs to all roots, and to connect 
all leaves to vertex vd. Since it is nontrivial to efficiently 
compute a function of dependent random variables, 
Algorithm 1 computes the mrt(G) assuming that the random 
variables are independent. This algorithm traverses the input 
graph in the breadth-first fashion starting from vs and ending 
at vd. In general, the algorithm accumulates the probabilistic 
computation times along each traversed path. When it reaches 
a node that has more than one parent, all the values 
associated with its parents are maximized. 

Algorithm 1 Calculate maximum reaching time of graph G 
Require probabilistic graph PG 
Ensure mrt(G) = tempmrt (vs, vd) 
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1. G0 = 〈V0, E0, d, T〉 such that V0 = V + {vs, vd} 

2. E0 = E - {e ∈ E : d(e) ≠ 0} + {vs → e v ∈ Vr,      u ∈ 

Vl → e vd} 

3. ∀ u ∈ V0, tempmrt(vs, u) = 0, Tv s = Tv d = 0,      Queue = vs  

4. while Queue ≠ 0 do 
5.    get node u from top of the Queue 
6.    tempmrt(vs, u) = tempmrt(vs, u) + Tu 

7.    for all u v do → e

8.       decrement the incoming degree of node v by one 
9.       tempmrt(vs, v) = max(tempmrt(vs, u), tempmrt(vs, v)) 
10.       if incoming degree of node v becomes 0 then 
11.           insert node v into the Queue 
12.       end if 
13.    end for 
14. end while 

Lines 1 and 2 produce DAG G0 from G containing only edges 
e ∈ E, with d(e) = 0, and the additional zero dependency 
distance edges connecting vs to every root node v ∈ Vr of G 
and connecting every leaf node u ∈ Vl of G to vd. Line 3 
initializes the tempmrt(vs, u) value for each vertex u in the new 
graph and sets the computation time of Tv s and Tv d to zero. 
Lines 4-12 traverse the graph in topological order and 
compute the mrt of each v with respect to vs (tempmrt(vs, vd)). 
Note that the tempmrt for node v with respect to vs is originally 
set to zero. It stores the current maximum computation time 
of all node v's visited parents. When the first parent of v is 
dequeued, v has its indegree reduced by one (Line 8) and 
tempmrt mrt is updated (Line 9). Vertex v's other parents are in 
turn dequeued, and the process is repeated. Eventually, the 
last parent of node v will be dequeued and maximized. At this 
point, node v will be inserted into the queue since all parents 
have been considered, i.e., indegree of v equals zero (Line 
10). Node v will be eventually dequeued by Line 5. Line 6 
will then add Tv to the tempmrt of node v producing the final 
mrt with respect to all paths reaching node v. 

Note that the initial computation times are integers and the 
probabilities associated with these times being greater than 
the given value c are accumulated as one value in the 
algorithm. Only O(c+1) values need to be stored for each 
vertex. Therefore, the time complexity for calculating the 
summation (Line 6), or the maximum (Line 9) of two vertices 
is O(c2). Since the algorithm computes the result in a breadth 
first fashion, the running time of Algorithm 1 is O(c2|V| |E|), 
while the space complexity is bounded by O(c|V|). 

3.2 Probabilistic Retiming 

Using the concept of mrt, Algorithm 2 presents the 
probabilistic retiming algorithm which reduces the longest 
path computation time of the given PG to meet a timing 
constraint. Such a constraint is that Pr(mrt(vs, vd) < c) > θ  
where c is the desired longest path computation time of the 
graph and θ  is the confidence probability. This requirement 
can be rewritten as Pr(mrt(vs, vd) < c) ≤ δ, where δ is 1 - θ. 
The algorithm retimes vertices whose probability of 
computation time being greater than c is larger than the 

acceptable probability value. Initially, the retiming value for 
each node is set to zero and nonzero dependency distance 
edges are eliminated. Then, vs is connected to the root-
vertices of the resulting DAG and vd is connected by the leaf-
vertices of the DAG. Lines7-17 traverse the DAG in a breath-
first search manner and update the tempmrt for each node as in 
Algorithm 1. After updating a vertex, the resulting tempmrt is 
tested to see if the requirement, Pr(tempmrt(G) > c) ≤ δ, is 
met. Line 19, then decreases the retiming value of any vertex 
v that violates the requirement unless the vertex has 
previously been retimed in a current iteration. The algorithm 
then repeats the above process using the retimed graph 
obtained from the previous iteration. If the algorithm finds 
the solution for a given clock period, the final retimed graph 
implies the number of required resources to achieve such a 
schedule length. 

Algorithm 2 Probabilistic retiming 
Require probabilistic graph, a requirement Pr(tempmrt(G) > 
c) ≤ δ 
Ensure retiming function r for each node to meet the 
requirement 

1. ∀ node v ∈ V initialize retiming function r(v) to 0 
2. for i = 1 to |V| do 
3.    retime graph Gr with the retiming function r(v) 
4.   G0 = directed acyclic portion (DAG) of Gr 
5.   prepend dummy node vs to G0  
   {connects to all root nodes} 
6.   append dummy node vd to G0  

  {connected by all leaf nodes} 
7.   for all nodes in G0 do 
8.       tempmrt(vs, u) = 0 
9.       insert vs into Queue 
10.      Tv s = Tv d  = 0 {set timing of two dummies to 

     zero} 
11.  end for 
12.  while Queue ≠ 0 
13.      get node u from the Queue 
14.      tempmrt(vs, u) = tempmrt(vs, u) + Tu {adding two 

     random variables} 

15.      for all u v ∈ G→ e
0 do 

16.         decrement number of incoming degrees of node 
        v by one 

17.         tempmrt(vs, v) = max(tempmrt(vs, u),  
        tempmrt(vs, v)) {maximizing two random 
        variables} 

18.         if Pr(tempmrt(vs, v) > c) > δ and u has not been 
 retimed then 

19.            r(u) = r(u) -1 {move one dependency 
           distances from all outgoing edges to all 

    incoming edges} 
20.         end if 
21.         if number of incoming edges of node v is 0 

        then 
22.             insert node v into a ready Queue 
23.         end if 
24.      end for 
25.  end while 
26. end for 
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Line 19 pushes a dependency distance onto all incoming 
edges of a node that violates the timing constraint. Since all 
descendents of this node will also be retimed, Line 19 in 
essence moves a dependency distance from below vd to above 
this node. In other words, r(u) = r(u) – 1 for all nodes from u 
to vd. Hence only the incoming edges of vertex u will have an 
additional dependency distance. Once all nodes are not 
retimed in the current iteration, the requirement Pr(mrt(vs, vd) 
> c) ≤ δ is met. Then the algorithm stops and reports the 
resulting retiming functions associated with nodes in the 
graph. Otherwise, the algorithm repeats at most |V| times. 
Since the computation of the maximum reaching time is 
performed in every iteration, the time complexity of this 

algorithm is O(c2|V|2|E|) while the space complexity remains 
the same as in the maximum reaching time algorithm. The 
resulting retiming function returned by Algorithm 2 
guarantees (necessary condition) the following: 

Theorem 3.1. Given G = 〈V, E, d, T〉, a desired cycle period, 
c, and a confidence probability, θ = 1 - δ, if Algorithm 2 
(probabilistic retiming algorithm) finds a solution, then 
the resulting retimed graph Gr satisfies the requirement    
Pr(mrt(G) ≤ c) ≥ θ. 

 

 

 

 

 

 

 

 
Figure 7. Illustrates an example of a 9-node graph and its corresponding probabilistic timing information. 

 

 

 

 

 

 

 

 
Figure 8. Illustrates retimed graph corresponding to Table 1, 2, and 3. 

 
 

Table 1. Shows first iteration showing probability distribution of mrt(vs, v), v ∈ V 
 

Pr(mrt(vs, v)) for different time 
v ∈ V 

1 2 3 4 5 6 > c 
r(v) 

A 0.3 0.7 0 0 0 0 0 0 
B 0 0 0.24 0.56 0 0.06 0.14 0 
C 0 0 0 0.15 0.5 0.35 0 0 
D 0 0 0 0 0.108 0.372 0.520 -1 
E 0 0.5 0 0.5 0 0 0 0 
F 0 0 0.250 0 0.5 0 0.25 -1 
G 0 0 0.45 0 0.45 0.05 0.050 0 
H 0 0 0 0.056 0 0.338 0.606 -1 
I 0 0 0 0 0 0 1 -1 
vd 0 0 0 0 0 0 1 0 
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Table 2. Shows second iteration showing probability distribution of mrt(vs, v), v ∈ V 
 

Pr(mrt(vs, v)) for different time 
v ∈ V 

1 2 3 4 5 6 > c 
r(v) 

A 0.3 0.7 0 0 0 0 0 0 
B 0 0 0.24 0.56 0 0.06 0.14 0 
C 0 0 0 0.15 0.5 0.35 0 0 
D 0.9 0.1 0 0 0 0 0 -1 
E 0 0.5 0 0.5 0 0 0 0 
F 0.5 0 0.5 0 0 0 0 -1 
G 0.9 0 0 0.1 0 0 0 0 
H 0 0.225 0 0.45 0.05 0.225 0.5 -1 
I 0 0 0 0.112 0.112 0.225 0.550 -2 
vd 0 0 0 0.013 0.103 0.27 0.613 0 

 

Table 3. Shows third iteration showing probability distribution of mrt(vs, v), v ∈ V 
 

Pr(mrt(vs, v)) for different time 
v ∈ V 

1 2 3 4 5 6 > c 
r(v) 

A 0 0 0.15 0.5 0.35 0 0 0 
B 0 0 0 0 0.12 0.4 0.48 -1 
C 0 0 0 0 0 0.075 0.925 -1 
D 0.9 0.1 0 0 0 0 0 -1 
E 0 0.5 0 0.5 0 0 0 0 
F 0.5 0 0.5 0 0 0 0 -1 
G 0.9 0 0 0.1 0 0 0 0 
H 0 0.225 0 0.45 0.05 0.225 0.05 -1 
I 0 0.5 0.5 0 0 0 0 -2 
vd 0 0 0 0 0 0.037 0.963 0 

 

3.3 Example 
Consider the PG and the probability distribution associated 
with nodes in the graph in Fig.7. For this experiment, let c = 
6 be the desired longest path computation time and δ = 0.2 be 
the acceptable probability. Algorithm 2 works by first 
checking and computing mrt from vs to A and E. Then, it 
topologically calculates the mrt of the adjacent nodes of A 
and E. After it computes the mrt of node I, mrt(vs, vd) is 
obtained. 

Three iterations of Algorithm 2 computing the results of the 
maximum reaching time from vs to v including vd are 
tabulated in Tables 1, 2 and 3. After the first iteration, the 
retiming value associated with nodes D, F, H, and I are 
shown in Column r(v) of Table 1. The values in Columns 2-8 
show the probability that the mrt(vs,v), ∀v ∈ V, ranges from 1 
to 6 and greater than 6 (>6), respectively. The retimed graph 
associated with the retiming value in Table 1 after the first 
iteration is presented in Fig. 8a. Table 2 presents the 
maximum reaching time from the dummy node vs to each 
node v ∈ V as well as the retiming function for each vertex 
after the second iteration. Fig. 8b presents the retimed graph 
corresponding to the retiming function presented in Table 2. 
By computing the mrt(vs,v) of the retimed graph in Fig. 8b, it 

becomes apparent that nodes B and C need to be retimed. Fig. 
8c illustrates the final retimed graph in accordance with the 
retiming function presented in Table 3. Note that Table 3 also 
presents the final maximum reaching time and retiming value 
for each vertex which satisfies the required configuration. 
From this final retimed graph, one could, therefore, allocate a 
minimum of five processing elements in order to compute the 
graph in six time units with 80 percent confidence. 

4. Resource-Constrained Scheduling 

In this section, we present a probabilistic scheduling 
algorithm which considers the limited number of resources. 
The traditional rotation scheduling framework is extended to 
handle the probabilistic environment. We call this algorithm 
probabilistic rotation scheduling (PRS). Given a PG, the 
algorithm iteratively optimizes the PG with respect to the 
confidence probability and the number of resources. 

Before presenting this algorithm, we first discuss two 
important concepts that make scheduling under the 
probabilistic environment different from traditional 
scheduling problems. First, in the probabilistic model, a 
synchronization control step is not available. A node can 
begin its execution if all of its parents have already been 
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executed. This is similar to the asynchronous model where 
data request and handshaking signals are used to 
communicate between nodes. The schedule can be viewed as 
a directed graph where edges show either the data 
requirement to execute a node or the order that a node can be 
executed in a particular functional unit. Note that a 
synchronization will be applied at the end of each iteration. 
Second,  the task remapping strategy for PRS should take the 
probabilistic nature of the problem into account. The 
following subsection discuss these concepts in more details. 

 

4.1 Schedule Length Subject to the Confidence 
The concept of mrt can be used to compute the underlying 
schedule length. Hence, the conventional way of calculating 
schedule length has to be redefined to include the mrt notion. 
In order to do so, we update the probabilistic data flow graph 
by adding the resource information and extra edges between 
two nodes executed consecutively in the same functional unit 
and have no data dependencies between them. This graph, 
called the probabilistic task-assignment graph (PTG), 
represents a schedule under the probabilistic model. 

Definition 4.1. A probabilistic task-assignment graph (PTG) 
G = 〈V, E, w, T, b〉, is a vertex-weighted, edge-weighted, 
directed acyclic graph, where V is the set of vertices 
representing tasks, E is the set of edges representing the 
data dependencies between vertices, w is a edge-type 
function from e ∈ E to {0,1}, where 0 represents the type 
of dependency edge and 1 represents the type of flow-
control edge, Tv is a random variable representing the 
computation time of a node v ∈ V, and b is a processor 
binding function from v ∈ V to {PEi, 1 ≤ i ≤ n}, where PEi 
is processing element i and n is the total number of 
processing elements. 

 

 

 

 

Figure 9. Illustrates an example of a probabilistic  
task-assignment graph (PTG) where the nodes are assigned 

to PE0 and PE1. 

As an example, Fig. 9 shows an example of the PTG with 
two functional units PE0 and PE1. Nodes B and D are 
assigned to PE0. That is, b(B0 = b(D) = PE0. Meanwhile,  
b(C) = b(A) = PE1. Edges consists of C A, 

C D, B D, where w(e

→

→

1e

e e

1e

→ 2 → 3

→

1) = 1 and     
w(e2) = w(e3) = 0. Note here that if there exist edges A B 
and B → D and all of the nodes are scheduled to the same 
processor, edge A D, which was a true dependence edge,  

         

This definition assumes node v can start its execution right 
after all parents finish their execution. By observing this 
template, one can ascertain how long (the number of control 
steps) each processing element would be idle. The template 
scheduling decides where to reschedule a node using “their 
degree of flexibility.” 

can be ignored. Note also that removing redundancy edges is 
simple and should be utilized to speed up the calculation of 
mrt. In Fig. 9, edge C A is control-typed since A 
now has no dependency to C but has to execute after C due to 
resource constraints. Other edges represent data 
dependencies. Applying the mrt algorithm to the PTG, we 
can define the probabilistic schedule length. This length is 
expressed in terms of confidence probabilistic as follows. 

→

Definition 4.2. A probabilistic schedule length of PTG G = 
〈V, E, w, T, b〉 with respect to a confidence level θ, psl(G, 
θ), is the smallest computation time c such that Pr(mrt(G) 
> c) < 1 - θ. 

For example, consider the probability distribution of the 
mrt(G) shown in table 4. Given a confidence probability θ = 
0.8, the probabilistic schedule length psl(G, 0.8) is 14. This 
because the smallest possible computation time is 14, where 
Pr(mrt(G) > 14) < 0.2, i.e., 0.04365 + 0.02293 + 0.00875 = 
0.07818 < 0.2. Therefore, with 80 percent confidence, the 
computation time of G is less than 14. 

4.2 Task Remapping Heuristic: Template 
Scheduling 

In this section, we propose a heuristic, called template 
scheduling (TS), to search for a place to reschedule a task. 
This remapping phase plays an important role in reducing the 
probabilistic schedule length in PRS. Since the computation 
time is a random variable, there is no fixed control step 
within an iteration. As long as a node is placed after its 
parents, any scheduling location is legal. 

In template scheduling, a schedule template is computed 
using the expectation of the computation time of each node. 
This template implies not only the execution order, but also 
the expected control step that a node can start execution. In 
order to determine an expected control step, each node in a 
PTG is visited in the topological order and the following is 
computed: 

Definition 4.3. The expected control step of node v of  PTG 
G = 〈V, E, w, T, b〉, Ecs(v), is computed by  

Ecs(v) = max(Ecs(ui) + ETu i ),  

where ui → e v ∈ E, ETu represents the expected 
computation time of node u and Ecs(vi) = 0 for all root 
nodes vi ∈ V. 

Table 4. Shows possible computation time of  the mrt(G) 

 8 9 10 11 12 13 14 15 16 
Prob 0.00197 0.04373 0.20902 0.25140 0.23661 0.18194 0.04365 0.02293 0.00875 



NECTEC Technical Journal, Vol. III, No. 11 114

 

Definition 4. Given a PTG G = 〈V, E, w, T, b〉, a degree of 
flexibility of node u with respect to the processing element 
PEi, dflex(u, i), is computed by: 

dflex(u, i) = Ecs(v) - Ecs(u) – ETu, 
where u v ∈ E and u and v are assigned to PE→ e

i. 

 

 

 

 

 

 

 

 

Figure 10. Illustrates an example of how to obtain the 
expected control step. 

 

The degree of flexibility conveys the expected size of 
available time slot within  PEi. Fig. 10 shows a typical case 
where node v has more than one parent. u1, u2 and u3 are 
parents of node v and each of these parents has the expected 
computation time 1, 4, and 3, respectively. In the same order, 
the expected control steps of these nodes are 3, 4.7, and 3.7, 
respectively. Therefore, the expected control step Ecs(v) = 
8.7. According to Definition 4.3, the degree of flexibility of u 
with respect to PE0, is 8.7 – 3 – 1 = 4.7. This value conveys 
how long PE0 has to wait before v can be executed. Note that 
the degree of flexibility  of a node, which is executed at last 
in any PE, is undefined. The following steps compute the 
new G after rescheduling node v. 

Algorithm 3 Rescheduling rotated nodes using the template 
scheduling heuristic 
Require: PTG, rescheduled node v and confidence 
probability θ  
Ensure: Rescheduling new PTG with shortest psl 

1. Assume that all nodes in the PTG have their 
expected computation times precomputed 

2. ∀ node u ∈ V compute Ecs(u) and dflex(u) 
3. for each of target processors (PEi) do 
4. Using the maximum dflex to select node x which 

      is scheduled to PEi 
5.  schedule v after x 
6.  reconstruct a new PTG (assigned with PEi) with 

      this assignment 
7.  compare it with others PTG and get the one that 

      has the best psl 
8. end for 

This rescheduling policy hopes that placing a node in the 
processor with the expected biggest idle time slot results in 

the least potential of increasing the total execution time. If a 
computation time of the node is much smaller than the 
expected time slot, this approach may allow the next 
rescheduled node to be placed here also. This is similar to 
worst-fit policy, where the scheduler strives to schedule a 
node to biggest slot. In section 5, we demonstrate the 
effectiveness of this heuristic over the method that 
exhaustively finds the best place for a node. Note that this 
exhaustive search is not performed globally, rather the search 
is done locally in each remapping iteration. We call this 
heuristic a local search (LS). 

4.3 Rotation Phase 
Having discussed the rescheduling heuristic, the following 
presents the probabilistic rotation scheduling (PRS). Note 
that the previous heuristic or any rescheduling heuristic can 
be used as rescheduling part of this PRS algorithm. The 
experiments in Section 5 show the efficacy of the PRS 
framework with different rescheduling heuristics. 

Algorithm 4 Probabilistic Rotation Scheduling 
Require: PG and designer’s confidence probability θ 
Ensure: PTG with a shortest psl 

1. ∀u ∈ V compute ETu 

2. Gs ⇐ find_initial_schedule {finding an initial 
schedule for PG and keep it in Gs} 

3. for i = 1 to 2|V| do 
4. R ⇐ all roots of a DAG portion of Gs  

     {these are nodes to be rotated} 
5. retime each of the nodes in R 
6. reschedule these nodes one by one using the 

     heuristic previously presented 
7. compute psl of the new graph with respect to θ 
8. if psl(Gs, θ) ≤ psl (Gbest, θ) then 
9. Gbest ⇐ Gs {considering that Gbest is 

           initialized to Gs first} 
10. end if 
11. end for 

In order to use template scheduling, an expected computation 
time of each task will be precomputed. After that, an initial 
schedule is constructed by find_initial_schedule. Note that 
the algorithm for creating the initial schedule can be any 
DAG scheduling, e.g., probabilistic list scheduling discussed 
previously. Rotation scheduling loops for 2|V| times to 
reschedule all nodes in the graph at least once. Like 
traditional rotation scheduling, only nodes that have all their 
incoming edges with nonzero dependency distances will be 
drawn from each of these edges and placed on their outgoing 
edges. Then, these rotated nodes will be rescheduled one by 
one using the template scheduling technique. After all rotated 
nodes are scheduled, if the resulting PTG is better than the 
current one, Algorithm 4 will save the better PTG. 
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Figure 11. Illustrates an example of the computation time of graph in Figure 1b. 

 

 

 

 

 

 

 

Figure 12. Illustrates initial assignment and the corresponding execution order. (a) Static execution order. (b) PTG. 

 

 

 

 

 

 

 

Figure 13. Illustrates the probabilistic graph after A is rotated and the template values. (a) New PTG. (b) Ecs and dflex. 
 
 

Table 5. Shows possible computation time of  the mrt of a PTG 
 

 8 9 10 11 12 13 14 15 16 
Prob 0.00197 0.04373 0.20902 0.25140 0.23661 0.18194 0.04365 0.02293 0.00875 

 

4.4 Example 
Let us revisited the PG example in Section 3.3 as shown in 
Fig. 11a and the corresponding computation time in Fig. 11b. 
The confidence probability is given as θ = 0.8. After list 
scheduling is applied, the initial execution order is 
constructed as shown in Fig. 12a. The corresponding PTG is 
presented in Fig. 12b. Nodes A, B, H and I are assigned to 
PE0, nodes E and F are scheduled PE1 and nodes C, G and D 
are assigned to PE2. Edges B H and C G 
and G D are flow-control edges. 

→ e → e

→ e

For this assignment, the mrt of such a PTG is computed as 
shown in Table 5. Therefore, with higher than 80 percent 
confidence probability, psl(G, 0.8) = 14. 

According to the structure of the PTG, either A or E can be 
rescheduled. In the first rotation, PRS selects A to be 

rescheduled. One dependency distance is moved from all 
incoming edges of A and pushed to all outgoing edges of A. 
The resulting retimed graph PG is shown in Fig. 13a. In this 
graph, node A requires no direct data dependency from any 
node. Therefore, A can be placed at any position in the 
schedule. Fig. 13b shows the expected computation time, the 
expected control step, and the degree of flexibility of each 
node in this PTG. 

Based on the values in the table from Fig. 13b, it is obvious 
that an expected waiting time between B and H in PE0 where 
psl can be reduced. The resulting PTG and its execution order 
are shown in Fig. 14, where psl(G, 0.8) = 12. After running 
PRS for 18 iterations, the shortest possible schedule length 
was found in the 15th iteration. In Fig. 15, we present the 
resulting schedule length of the this trial which is less than 9 
with probability greater than 80 percent (psl(G, 0.8) = 9). 
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Figure 14. Illustrates the PTG, execution order and its mrt 
after the first rotation where psl (G, 0.8) = 12.  

(a) PTG. (b) Execution order. 

5. Experimental Results 

In this section we perform experiments both using 
nonresource and resource constrained scheduling on two 
general classes of problems. The first class are real 
applications which may have a combination of nodes with 
probabilistic computation times and with fixed computation 
times. The second are well-known DSP filter benchmarks. 
Since these benchmarks contain two uniform types of nodes, 
namely multiplication and addition, the basic timing 
information consisting of three probability distribution are 

assigned to each benchmark graphs. In order to show the 
usability of the proposed algorithm, three applications are 
profiled to get their probabilistic timing information. The 
profiler reports the processing time requirement in these 
applications and the corresponding frequency of this time 
value. The frequency of timing occurences is used to obtain a 
node probability distributions. A node in these graphs may 
represent a large number of operations which cause the 
uncertain computation time as well as operations which have 
fixed timing information. Each timing information is 
discretized to a smaller unit such as nanoseconds. 

The DSP filter benchmarks used in these experiments include 
a Biquadratic IIR filter, a 3-stage IIR filter, a fourth-order 
Jaunmann wave digital filter, a fifth-order elliptic filter, an 
unfolded fifth-order elliptic filter with an unfolding factor 
equal to 4 (uf = 4), an all-pole lattice filter, an unfolded all-
pole lattice filter (uf = 2), an unfolded all-pole lattice filter  
(uf = 6), a differential equation solver and a Volterra filter. 
The rest of the benchmarks are the application for image 
processing (Floyd-Steinberg), the application to search for a 
solution which maximize some unknown function by using 
genetic algorithm, and the famous example of the application 
in the fuzzy logic area, the inverted pendulum problem. All 
of the experiments were performed using SUN UltraSparc. 

 

Table 6. Shows probabilistic retiming versus worst case traditional retimimg 
 

θ = 0.9 θ = 0.8 Benchmark #nodes c worst 
c % c % 

Biquad IIR 8 78 60 23 57 26 
Diff. Equation 11 118 81 31 77 35 
3-stage direct IIR 12 54 44 19 41 24 
All-poll Lattice 15 157 120 24 117 25 
4th order WDF 17 156 116 26 112 28 
Volterra 27 276 216 22 212 23 
5th Elliptic 34 330 240 28 236 29 
All-poll Lattice (uf=2) 45 468 350 25 346 25 
All-poll Lattice (uf=6) 105 1092 811 26 806 26 
5th Elliptic (uf=4) 170 1633 1185 27 1174 28 
Floyd-Steinberg 13 30 23 23 21 30 
Genetic application 18 202 180 11 127 37 
Fuzzy application 24 19 17 11 17 11 

 

 

 

 

 

 

 
Figure 15. Illustrates the final PG, PTG, execution order where psl(G, 0.8) = 9. (a) PG. (b) PTG. (c) Final execution order. 
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Table 7. Shows probabilistic retiming versus average-case 
analysis 

 
Traditional Algorithm 2 

Benchmark mrt(G r
avg ) θ = 0.9 θ = 0.8 

Biquad IIR 70.40 52.64 52.30 
Diff. Equation 76.05 73.07 72.50 
3-stage direct IIR 41.90 37.70 38.36 
All-poll Lattice 114.45 111.77 111.40 
4th order WDF 106.73 106.44 105.98 
Volterra 204.00 202.44 202.00 
5th Elliptic 233.30 228.41 227.59 
All-poll Lattice (uf=2) 342.17 338.11 337.62 
All-poll Lattice (uf=6) 800.51 794.02 793.39 
5th Elliptic (uf=4) 800.51 794.02 793.39 
Floyd-Steinberg 18.47 18.45 18.17 
Genetic application 150.89 144.01 112.46 
Fuzzy application 18.03 16.08 16.08 

5.1 Nonresource Constrained Experiments 
In each experiment, for a given confidence level θ = 1 - δ, 
Algorithm 2 is used to search for the best longest path 
computation time. In order to do this, the current desired 
longest path computation time (c) is varied based on whether 
or not a feasible solution is found. For instance, if c is too 
small, the algorithm will report that no feasible solution 
exists. In this case, c is increased and Algorithm 2 is 
reapplied. This process will repeated, until the smallest 
feasible c is found. 

Table 6 shows the results for traditional retiming using worst-
case computation time assumptions (column c worst) and the 
probabilistic model with two high confidence probabilities (θ  
= 0.9 and 0.8). The average running time for these 
experiments was determined to be below 60 seconds 
including the input/output interfaces. The algorithms are 
implemented in a straightforward way where array is used to 
store probability distributions. Column 3 in the table presents 
the optimized longest path computation times obtained from 
applying traditional retiming using the worst-case 
computation time for each node in the graph benchmarks. For 
columns where θ  = 0.9 and θ = 0.8, the probabilistic 
retiming algorithm is applied to the benchmarks (G) while 
each of these confidence probabilities is used as its input. The 
numbers show in both columns are the given c where 
Pr(mrt(G) ≤ c) ≥ θ. The value c from this requirement is the 
smallest input value which Algorithm 2 can find a solution to 
satisfy such a requirement. Notice that for all benchmarks the 
longest path computation time with θ = 0.9 are still smaller 
than the computation time in Column 3. In order to quantify 
the improvement of the probabilistic retiming algorithm, the 
“%” columns list the percent of computation time reductions 
with respect to the value from Column 3. 

Table 7 compares the probabilistic retiming algorithm to the 
traditional retiming algorithm with average computation 
times used for each node in the graphs. First, the probabilistic 
nodes of each input graph are converted to fixed time nodes 
resulting in Gavg, i.e., each node assumes its average 

computation time rather than probabilistic computation time. 
Traditional retiming is then applied to the resulting graph, 
resulting in graph G avg . The purpose of this table is to 

compare G r
avg (obtained from running traditional retiming on 

G ) with retimed PGs. In order to compare with the results 
produced by the proposed algorithm, the placement of 
dependency distance in each G avg is preserved while the 
original probabilistic computation times are replaced with the 
average computation times. Put another way, we transformed 
each G back to a probabilistic graph. Algorithm 1 is then 
used to evaluate these graphs while only the expected values 
of each result are shown in the table. Columns 4 and 5 
present the expected values of the results obtained from 
running probabilistic retiming on each PG where the 
confidence probability of 0.9 and 0.8 are considered. Note 
that these results are consistently better (smaller value) than 
the results obtained from running traditional retiming on each 
of G r

avg . Hence, the approach of using the expected values 
for each node is neither a good heuristic in the initial design 
phase nor does it give any quantitative confidence to the 
resulting graphs. 

r

r
avg

r

r
avg

5.2 Resource-Constrained Experiments 
We tested the probabilistic rotation scheduling (PRS) 
algorithm on the selected filter and application benchmarks: 
the fifth elliptic filter, 3 stage-IIR filter, Volterra filter, 
Lattice filter, and Floyd-Steinberg, Genetic algorithm, Fuzzy 
logic applications. Table 8 demonstrates the effectiveness of 
our approach on both 2-adder, 1-multiplier and 2-adder, 2-
multiplier systems for those filter benchmarks. The 
specification of 3 and 4 general purpose processors (PEs) are 
adopted for the other three application benchmarks. The 
performance of PRS is evaluated by comparing the resulting 
schedule length with the schedule length obtained from the 
modified list scheduling technique (capable of handling the 
probabilistic graphs). We also show the effectiveness of 
template scheduling (TS) by comparing its results with other 
heuristics, namely, local search (LS), and as-late-as possible 
scheduling (AL). The average execution times of AL and TS 
are very comparable (about 12 seconds running on 
UltraSparc) while LS takes much longer time and does not 
give the outstanding results comparing with those from TS. 

In each rescheduling phase of PRS, the LS approach strives 
to reschedule a node to all possible legal location (local 
search) and returns the assignment which yields the minimum 
psl(G, θ). This method is simple and gives a good schedule; 
however, it is time consuming and not practical to try all 
possible scheduling places in every iteration of PRS. 
Furthermore, a PTG needs to be temporarily updated in every 
trial in order to compute the possible schedule length. On the 
contrary, the AL method reduces the number of trials by 
attempting to schedule a task only once at the farthest legal 
position in each functional unit or processor while the TS 
heuristic re-maps the scheduled node after the node with the 
highest degree of flexibility in each functional unit. 
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Table 8. Shows comparison of the results obtained from applying benchmarks modified list and  
probabilistic rotation scheduling (using different remapping heuristics) 

 
θ = 0.9 θ = 0.8 

PRS PRS Spec. Benchmarks #nodes PL AL LS TS PL AL LS TS 
 Diff. Equation 11 169 152 133 133 165 147 131 131 
2 Adds. 3-stage direct IIR 12 188 184 151 151 184 179 147 147 
1 Mul. All-poll Lattice 15 229 225 142 141 225 220 138 138 
 Volterra 27 526 468 361 361 519 461 354 354 
 5th Elliptic 34 318 298 293 293 314 294 289 289 
3 PEs Floyd-Steinberg 13 42 32 27 30 38 28 28 27 
 Genetic application 18 434 295 216 275 438 180 150 150 
 Fuzzy application 24 52 46 45 45 52 45 43 43 
 Diff. Equation 11 120 103 83 90 117 100 83 91 
2 Adds. 3-stage direct IIR 12 124 120 87 87 120 110 83 82 
2 Mul. All-poll Lattice 15 229 225 140 139 225 220 136 136 
 Volterra 27 359 270 237 259 353 265 221 256 
 5th Elliptic 34 288 288 274 271 284 274 270 267 
4 PEs Floyd-Steinberg 13 42 30 26 28 38 24 24 24 
 Genetic application 18 434 291 205 275 337 180 180 180 
 Fuzzy application 24 49 41 38 40 47 38 35 36 

 
 

Table 9. Shows comparing probabilistic rotation with traditional rotation running on  
graphs with average computation times 

 
worst case θ = 0.9 θ = 0.8 Spec. Benchmarks #nodes 
L R PL PRS AVG PL PRS AVG 

 Diff. Equation 11 228 180 169 133 136 165 131 131 
2 Adds. 3-stage direct IIR 12 252 204 188 151 163 184 147 179 
1 Mul. All-poll Lattice 15 312 204 229 141 153 225 138 149 
 Volterra 27 750 510 526 361 526 519 354 519 
 5th Elliptic 34 438 396 318 293 299 314 289 294 
3 PEs Floyd-Steinberg 13 59 38 42 30 40 38 27 31 
 Genetic application 18 500 400 434 275 416 438 180 410 
 Fuzzy application 24 69 55 52 45 66 52 43 63 

 

Columns θ = 0.8 and θ = 0.9 show the results when 
considering the probabilistic situations with confidence 
probabilities 0.8 and 0.9. Column “PL” presents the 
probabilistic schedule length (psl) after modified list 
scheduling is applied to the benchmarks. Columns “LS”, 
“AL”, and “TS” show the resulting psl, after running PRS 
against those benchmarks using the remapping heuristics LS, 
AL and TS respectively. Among these three heuristics, the TS 
scheme produces better results than AL which uses the 
simplest criteria. Further, it yields as good as or sometimes 
even better results than given by the LS approach, while TS 
taking less time to select a re-scheduled position for a node. 
This is because in each iteration the LS method finds the 
local optimal place. However, scheduling nodes to these 

positions does not always result in the global optimal 
schedule length. 

In Table 9, based on the system that has 2 adders and 1 
multiplier (for filter benchmarks) and 3PEs (for application 
benchmarks), we present the comparison results obtained 
from applying the following techniques to the benchmarks: 
modified list scheduling, traditional rotation scheduling, 
probabilistic rotation scheduling using template scheduling 
heuristic, and traditional rotation scheduling considering 
average computation times. Columns “L” and “R” show the 
schedule length obtained from applying modified list 
scheduling and traditional rotation scheduling respectively to 
the benchmarks where all probabilistic computation times are 
converted into their worst-case computation times. 
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Obviously, considering the probabilistic case gives the 
significant improvement of the schedule length over the 
worst case scenario. 

Column “PL” presents the initial schedule lengths obtained 
from using the modified list scheduling approach. The results 
in column “PRS” are obtained from Table 8 (PRS using 
template scheduling heuristic). In column “AVG”, the psls 
are computed by using the graphs (PTGs) retrieved from 
running traditional rotation to the benchmarks where the 
average computation time is assigned to each node. These 
results demonstrate that considering the probabilistic 
situation while performing rotation scheduling can 
consistently give better schedules than considering only 
worst-case or average-case computation times. 

6. Conclusion 

We have presented scheduling and optimization algorithms 
which operate in probabilistic environment. A probabilistic 
data-flow graph is used to model an application which takes 
this probabilistic nature into account. The probabilistic 
retiming algorithm is used to optimize the given application 
when nonresource constrained environments are assumed. 
Given an acceptable probability and a desired longest path 
computation time, the algorithm reduces the computation 
time of the given probabilistic graph to the desired value. The 
concept of maximum reaching time is used to calculate 
timing values of the probabilistic graph. When a limited 
number of processing elements is considered, the 
probabilistic rotation scheduling algorithm (where the 
probabilistic concept and loop pipelining are integrated to 
optimize a task schedule) is proposed. Based on the 
maximum reaching time notion, the probabilistic schedule 
length is used to measure the total computation time of these 
tasks being scheduled in one iteration. Given a probabilistic 
graph, the schedule is constructed by using the task-
assignment probabilistic graph and the probabilistic schedule 
length is computed with respect to a given confidence 
probability θ. Probabilistic rotation scheduling is applied to 
the initial schedule in order to optimize the schedule. It 
produces the best optimized schedule with respect to the 
confidence probability. The remapping heuristic, template 
scheduling, is incorporated in the algorithm in order to find 
the scheduling position for each node. 
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