

A Comparison of System Modelling for Distributed Applications:
RM-ODP vs MDA*

Twittie Senivongse, Yunyong Teng-amnuay, and Natawut Nupairoj

Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand
Email: twittie.s@chula.ac.th, yunyong.t@chula.ac.th, natawut.n@chula.ac.th

ABSTRACT – Constructing a business application is a big task as issues always rise starting from
how to model business requirements to how the system should be deployed. This process involves making
decisions on the design, architecture, and several management aspects for the system. As part of our
research project to study the design and construction of distributed enterprise applications, we survey
trends in computer technology that relate to building of such applications. This paper reports our survey
on system modelling for distributed applications. We cover two key standards: the Reference Model of
Distributed Processing (RM-ODP) by ITU-T/ISO and the Model Driven Architecture (MDA) by OMG.
Under the two standards, we discuss system modelling from various viewpoints as well as modelling
languages. The paper concludes with a comparison between these standards and their status of use at
present for constructing distributed systems.
KEY WORDS – System modelling, distributed enterprise systems, RM-ODP, MDA

บทคัดยอ – ในการสรางแอพพลิเคชันสําหรับธุรกิจในปจจุบันจําเปนตองคํานึงถึงแงมุมตางๆ เร่ิมต้ังแตแบบจําลองความตองการของ
ธุรกิจควรมีหนาตาอยางไร ไปจนถึงการใชงานระบบที่สรางเสร็จแลวควรเปนไปในลักษณะใด ซึ่งกระบวนการนี้เก่ียวของกับการ
ตัดสินใจในดานการออกแบบ การเลือกสถาปตยกรรมสําหรับการทํางานของแอพพลิเคชัน และประเด็นดานการจัดการตางๆ ภายใน
ระบบ บทความนี้เปนสวนหนึ่งของงานวิจัยดานการออกแบบและสรางแอพพลิเคชันสําหรับระบบวิสาหกิจแบบกระจาย ซึ่งไดทําการ
สํารวจแนวโนมของเทคโนโลยีคอมพิวเตอรตางๆ ท่ีเก่ียวของกับการสรางแอพพลิเคชันดังกลาว บทความนี้จะรายงานการสํารวจ
มาตรฐานในการสรางแบบจําลองของระบบกระจายสองวิธี ไดแก อารเอ็ม-โอดีพีของไอทียู-ที/ไอโซ และ เอ็มดีเอของโอเอ็มจี โดยจะ
กลาวถึงการสรางแบบจําลองของระบบ และภาษาที่ใชอธิบายแบบจําลอง รวมทั้งทําการเปรียบเทียบมาตรฐานทั้งสอง และกลาวถึง
สภาพการนํามาตรฐานทั้งสองไปใชในการสรางระบบกระจาย
คําสําคัญ – การสรางแบบจําลองของระบบ ระบบวิสาหกิจแบบกระจาย อารเอ็ม-โอดีพี เอ็มดีเอ

* This research is supported by the Chulalongkorn University-Industry Linkage Research Grant (Fiscal Year 2004)

1. Introduction

Enterprise systems today are facing a big challenge in
keeping up with rapid advances in information technology.
The problem is not how to ‘change’ to the new technology
but rather how to ‘evolve’ with it. This means enterprises
will consider, if possible, how to mix preexisting systems
they have invested with the new technology, rather than
constructing the whole systems anew.

Our research project works around the issues in the
development and evolution of distributed enterprise
systems. In fact there are several areas of concern including
system modelling, system architecture, security

infrastructure, information management, scalability,
resiliency, and change management. We identify system
modelling and system architectures as the most
fundamental building blocks for system construction. The
application of these two is driven by business process
modelling which identifies various requirements of the
enterprise (Figure 1). Constructing an enterprise system is
hence a mapping from business process modelling to
design and implementation models. The design will be
mapped onto target technology at implementation design
phase, before the application is coded and tested.
Implementation design will be closely related to software
architecture of choice and its middleware that govern how
the business processes are implemented and deployed.

Other areas, i.e. security, information management,
resiliency, scalability, and change management may be
considered as basic services of the system that are also
driven by business requirements and utilise design and
architecture building blocks in their construction.

Figure 1. Fundamentals of enterprise construction

This paper presents one part of our survey of the
fundamental building blocks. We focus on the modelling
aspect of distributed applications and discuss how systems
can be modelled and the languages used to describe
models. The presentation is as follows. Section 2 describes
major standards for distributed system modelling and
Section 3 reviews modelling languages. Section 4 compares
the standards and discusses their status of use. The
conclusion is found in Section 5.

2. Distributed System Modelling

System modelling is part of system development process
that describes the templates of the system to be developed
[1]. A distributed application has characteristics that differ
from those of a centralised counterpart such that functional
decomposition of the system is as important as design of
other architectural issues such as system and information
security, messaging mechanisms, provision for fault
tolerance, quality of services, and system management
functions. For distributed applications, it is therefore
necessary to also integrate these requirements with
functional design into the design model.

Major players in distributed system modelling are ITU-
T/ISO and OMG. ITU-T and ISO standardised the
Reference Model for Open Distributed Processing (RM-
ODP) [2] that defines essential elements within a
distributed system and a specification framework based on
viewpoint modelling. On the other hand, OMG first started
as a middleware-centric organisation standardising the
Common Object Request Broker Architecture (CORBA) as
a truly vendor- and language-independent middleware that
allows objects to interoperate smoothly across hardware
platform, operating system, and programming language
boundaries. OMG is now moving up from application
implementation standardisation to application design
standardisation with the Model Driven Architecture (MDA)

[3] that describes a new model-oriented development
process.

2.1 RM-ODP Modelling
Modelling a distributed system in RM-ODP is by
describing the system in five different viewpoints [2].
These viewpoints do not represent layers of system
architecture but rather the projection of the system from
different angles. They in fact should not be thought of as
steps in a development process but they are the closest part
of RM-ODP to the development process. Five RM-ODP
viewpoints are

• Enterprise viewpoint – This is concerned with
business activities at high level focusing on purposes,
scope, entities and their communities, roles of the
entities for the business, and business policies.

• Information viewpoint – This is concerned with
semantics of information that needs to be stored and
processed in the system. The information is extracted
from individual entities and the viewpoint describes
information sources, sinks, and flows.

• Computational viewpoint – This is concerned with
functional distribution of the system as a set of logical
entities or objects which are sources and sinks of
information interacting at interfaces.

• Engineering viewpoint – This is concerned with
mechanisms and functions required to support
distributed interaction including networked
infrastructure and abstract machine which carries out
computational interaction.

• Technology viewpoint – This is concerned with the
choice of technology for the system and how the
system is structured in terms of hardware and software
components.

The viewpoints are not independent and should be
consistent to model a single system. To express viewpoints,
modelling languages are required and viewpoint
consistency will be checked. Unfortunately, RM-ODP does
not define a specific language or notation for expressing
these viewpoints. Since viewpoints must be consistent,
several attempts have been made to use specification
languages to describe viewpoints so that consistency
checking can be verified automatically using proof engines
[4], [5], [6]. Despite precision and expressiveness, pure
formal specifications are not so well-embraced by
enterprise designers since they require mathematical
knowledge and hence are quite hard to put into practice.
Modellers tend to stick with graphical languages for ease of
use and the most widely-used today is the standardised
Unified Modeling Language (UML) [7]. By using UML,
viewpoints can be represented diagrammatically by various
UML diagrams with enhancements for distributed system
modelling (see Section 3). It is also possible that design

Business Aspect

(Business Process Modelling and
Componentisation)

Modelling Aspect
(Methods and
Languages)

Architectural Aspect
(System Architecture

Paradigms)

tools can automatically or semi-automatically generate
formal specifications of the design from graphical models.
This will facilitate enterprise designers and at the same
time enable formal consistency checking of viewpoints.

Figure 2. Enterprise viewpoint example [2]

Figure 3. Information viewpoint example [2]

Figure 4. Computational viewpoint example [2]

Figure 2 shows an enterprise viewpoint depicting entities
within a sales organisation community. Figure 3 shows an
information viewpoint depicting information objects of the
sales organisation. A computational viewpoint in Figure 4
shows many users, each corresponding to one of the
enterprise entities, and each requiring services that relate to
some part of the information schema. The information
schema needs to have a shared and persistent
representation, so a computational model of database
systems interacting with the users via their interfaces is
depicted. These examples use a simple diagrammatic
modelling notation which is not part of RM-ODP.

RM-ODP also defines functions that are fundamental to the
construction of any ODP systems. The functions are base
architectural services that will be included in the
implementation design. Examples are [8]:

Event notification function – This is concerned with
recording of event histories and ordering and notification of
events.

Checkpoint and recovery function – This is concerned with
checkpointing objects, instantiating checkpoints, and undo
or redo interactions for failure recovery.

Replication function – This is concerned with coordination
among replica objects and group membership management.

Trading function – This is concerned with advertisement
and discovery of interfaces.

Security function – This is concerned with access control,
authentication, security audit, key management, and
confidentiality and integrity of information.

A number of research [9], [10], [11] argue that object-
oriented process, including the well-known Unified Process
[1], mostly consider development of centralised sequential
systems and rarely suggest how to integrate distributed
algorithms to solve problems of distribution such as
synchronisation, replication management, or hardware
failure. Therefore, development processes have emerged
for distributed systems by enhancing RM-ODP which itself

lacks concrete development process and design notation.
Mostly those research works propose a development
process that corresponds to five viewpoints and also
proposes their own design notation or merely an extension
to UML. In [9], a development process is proposed. Their
analysis phase is mapped to the enterprise viewpoint and
includes requirement capturing; design phase is mapped to
information and computational viewpoints and includes
validation of computational objects behaviour and
requirements; and finally implementation and testing
phases are mapped to engineering and technology
viewpoints. The process in [10] defines steps to model
structural, instance, interaction, and implementation views
of a system. This is analogous to RM-ODP viewpoints as
structure and interaction of logical computational objects
will be modelled and mapped to components as units of
implementation. This process uses an extension to UML,
called a UML profile, with specific definitions of
stereotypes and tagged values to express particular design.
Object Constraint Language (OCL) [12] is also used in this
work to express other semantics in the design model such
as binding constraint, security policies, and replication
policies. For the work in [11], their business modelling
corresponds to the enterprise viewpoint; system modelling
to information and computational viewpoints; distribution
modelling to engineering viewpoint; and implemention to
technology viewpoint. Several UML diagrams and OCL
are also used to model and formalise their design.

2.2 Model-Driven Architecture (MDA)
Apart from other OMG standards such as CORBA [14] and
UML [7], MDA is the next step of OMG to standardise an
application development process [3], [13], [15]. As the
name implies, everything for an application system is built
upon models, i.e. the system is generated from design
models. MDA supports the entire life cycle of applications,
from design to coding, deployment, maintenance and
evolution. It is based heavily on UML and has a close
relation to CORBA and other OMG technologies.

Figure 5. MDA concept [15]

The concept of MDA (Figure 5) is that application systems
will be generated from platform-independent design model.
The process starts by defining a base Platform-Independent
Model (PIM) in UML which expresses only business
functionality and behaviour, followed by a second-level
PIM which may include some implementation concepts
(e.g. transactionality, security level, or configuration
information). Then, a standard mapping or transformation
definition will be used to map PIM to Platform-Specific

Model (PSM). PSM is also a design model but it includes
details specific to the underlying implementation platform
(e.g. CORBA, EJB, Web Service, .NET) that is chosen for
the system, for example, specific classes or interfaces of the
platform. PSM will be expressed in dialects of UML called
UML profile with addition of stereotypes and tagged values
tailored to a particular platform. Application generation is
then by mapping from PSM to specific code details of the
platform. All of these steps from PIM to PSM and then to
code are automatically or semi-automatically done by using
MDA transformation tools. Figures 6 and 7 show
respectively an example of a PIM for a breakfast delivery
service and its PSM for implementing on EJB platform
[15].

Figure 6. PIM example [15]

Figure 7. PSM example [15]

With MDA, the application system will evolve gracefully
with new technology since the semantics of the application
is separate in PIM, and so the system can easily migrate to
the new platform by new sets of transformation definitions
to PSM and implementation code. In other words, PIM can
retain its value over time until it is changed by application
requirements. When a part of PIM is changed, only relevant
parts of PSM and implementation code will be regenerated.
MDA will support integration and interoperability between
different technology platforms. Different parts of the
application can be mapped onto different platforms and the
modelling tools can take care of invocations across multiple
platforms.

Other OMG technologies can be complementary to MDA.
The design model can incorporate a data repository model
represented by the Common Warehouse Metamodel
(CWM) [16]. The design can be represented and stored as
the Meta-Object Facility (MOF) objects [17] and can be
easily ported to other environment in XML Metadata
Interchange (XMI) format [18].

MDA will embrace the use of OMG pervasive services
(e.g. directory service, transaction service, event service)
and vertical domain facilities (e.g. finance, e-commerce)
across platform technologies. On building the application,
the designer can integrate the model of these pervasive
services and domain facilities with base PIM and next-level
PIM of the business. By this integration, the designer can
make use of the design patterns of these OMG standard
services in his/her own design. In fact, the benefits of these
services will not be employed if the application platform is
not CORBA but OMG is working on transforming the
specifications of these services into models so that they can
be integrated with PIM and utilised in other platforms also.

Despite its benefits, MDA relies heavily on transformation
tools and standard transformation definitions. Whether or
not the designer will have to hand-tailor PSM and the
generated code depends on the maturity of the standard
transformation definitions. MDA assumes that applications
are built from scratch and it does not originally aimed for
legacy applications. One way to apply it is to wrap legacy
applications to the platform technology that will be used
first. MDA can generate code to interface with the wrapped
parts but the interaction between the wrapped parts and the
underlying legacy modules will have to be hand-coded.

The standardisation of MDA is actively in progress as
OMG has published an RFP for UML 2.0. The UML
profile for CORBA, which is the concept of IDL on UML,
was standardised in 2000 while profiles for other platforms
are in process. As a result, we can expect MDA with
mapping to CORBA middleware to come out in the near
future.

2.3 Other Approaches

There are other attempts to propose development processes.
The work in [19] proposes an environmental object model
in which the system is modelled by objects that are linked
into a containment hierarchy by invocation dependency or
aggregation. Design constraints, such as synchronisation
rules for concurrent object invocations and order of
servicing requests, can be put on links. Their process
revolves around those environmental objects and takes the
waterfall model starting from analysis, logical design,
physical design, to implementation. At logical design,
environmental classes that provide a solution for functional
requirements are defined as classes and interfaces, while at
physical design, the logical containment hierarchy is
transformed to take into account physical requirements and
distributed nature of the implementation platform.

At the other extreme, one can take a formal approach to
designing a distributed application as in [20]. Their process
starts with writing a requirement specification in TRIO
formal language. The specification will be mapped to a
high-level design language called TC by identifying data
flows, interfaces, attributes and operations semantics, and
services and architecture of the underlying implementation
platform. From TC, the design can be expressed graphically
using TRIO symbols. The advantage of this process is that
the design is created from precise and expressive formal
requirements.

COMET [21] is another development method for
concurrent applications especially distributed and real-time
applications. The development process consists of
requirement modelling; analysis modelling which
emphasises on problem domain classes; design modelling
which emphasises on solution domain classes; incremental
software construction which includes detailed design,
coding, and unit testing; incremental software integration
which conducts integration testing; and finally system
testing against functional requirements. Its modelling
language is UML with an extension to model active objects
with their own thread of control as well as synchronous and
asynchronous message communication.

3. Modelling Languages
A modelling language is a notation for expressing design
and the one that has been widely accepted is the standard
UML [7]. UML provides mechanisms to extend the
language either by defining stereotypes to specialise
existing UML elements for a particular problem, defining
tagged values in the form of {property = value} to attribute
UML elements, or defining constraints to detail semantics
of UML elements. OCL [12] is another way to put formal
constraints on the model. It can express guard as invariant
and conditions, or parameter-based constraint on the
behaviour. Many extensions have been made to UML to

define specialised notations for particular characteristics of
distributed applications.

3.1 Standard-Based UML Extensions
OMG has issued an RFP for UML profile for Enterprise
Distributed Object Computing (EDOC) as there is a
requirement for a standard set of enterprise modelling
notation, and the submission so far has embodied RM-ODP
modelling approach within EDOC [22]. Meanwhile, several
research works have put efforts on RM-ODP enterprise
modelling based on UML diagrams.

In general, aspects of a distributed system can be modelled
using various UML diagrams with special semantics added
on by UML extension mechanisms and OCL. Based on
RM-ODP concept, the work in [9] collectively expresses
viewpoints using standard UML diagrams and OCL to
formalise semantics as follows:

• Use case diagrams can be used to capture business

requirements.
• Class diagrams can be used to capture information and

business objects.
• Activity diagrams can be used to capture business

processes.
• Statechart diagrams can be used to capture dynamic

nature of information objects.
• Collaboration diagrams can be used to capture

configuration and distribution of computational
objects.

• Sequence diagrams can be used to capture interactions
between computational objects.

• Package diagrams can be used to capture logical
architecture and structure in the system.

• Deployment diagrams can be used to capture
configuration of system hardware and software
components.

A number of research works have specifically attempted to
express ODP enterprise viewpoint with UML. In [23], an
enterprise entity is represented by a UML object, its action
is specified by a UML operation, and its role is represented
by an object class with a stereotype <<role>>. Constraints
on operations and policies are represented by notes. A
community within the enterprise is modelled by a
collaboration diagram. An objective of a community is
represented by a use case and the enterprise is by a use case
diagram. As in [24], details of the enterprise viewpoint can
be added by a sequence diagram representing interaction
between roles of entities, and an activity diagram (with
swim lanes) representing a group of concurrent actions
among roles of entities. The work in [25] discusses
problems with UML when used to specify enterprise
policies. For example, pre/post-conditions in UML which
specify policies that constrain actions do not yet support
exception-based view of constraints and courses of action
when violations occur. Also, the idea of enterprise roles is

actually closest to the concept of UML actors, but the UML
definition leaves actors outside the domain being modelled,
whereas roles should be part of the modelled enterprise.
Even so, modellers find UML useful and try to get round
these drawbacks while hoping that the raised issues would
merit further discussion among UML experts.

For a distributed system with real-time requirements, the
standard UML profile called Real-Time UML can be used
to model the system [26].

3.2 UML for Distributed Characteristics
Research works have undergone on how to detail the
design of a distributed system with semantics relating to
distributed characteristics, e.g. security, fault tolerance
features, replication, and QoS. Mainly, the design
specification is based on the extension to UML diagrams
with formal behavioural specifications.

Object Security Constraint Language (OSCL) is proposed
in [27] for security specification for information within the
system. By modification of some OCL definitions, OSCL
can be used to specify security levels (e.g. Unclassified,
Confidential, Secret, TopSecret) for classes, attributes,
methods, and associations. Objects usually inherit security
level of their classes, and rules governing relations for
classes and associations can be defined. For example, the
security level of a class can be determined by that of some
attributes of the class, the subclass must have more
restrictive security level than the superclass, or the
association must have higher security level than the classes
to which it is related.

Specification of a fault tolerant system is described in [28].
This work is based on fault tolerance function in RM-ODP
which includes policies for checkpoint/recovery,
replication, and event notification. A set of computational
objects that enables this function can be represented by
RM-ODP based UML (e.g. EDOC), and constraints
representing policies are specified by attribute values or
OCL expressions for attributes of policy objects. An
example of checkpoint/recovery is given where its policy
concerns behaviour such as when, where, and what to
checkpoint or recover. In [29], the work introduces a
replication language called JReplica. Based on Aspect-
Oriented Programming paradigm for Java, JReplica enables
separation of replication code from functional code of
objects within the system. A JReplica aspect, associated
with an object class, specifies attributes, state, guard, and
actions for the replication of objects of the class. The
attributes define the replication policy while the state
represents object state to be replicated. The operations
define methods to manipulate replicated state with the
guard that must be true before executing replication. The
actions define what must be done before or after
replication. UML is also extended to model replication
aspects such that an aspect associated with a particular
object class is modelled by a class with a stereotype

<<Replication>>. The Replication state is introduced to the
statechart diagram where a guard corresponds to state
transition and before/after replication actions are
represented in entry/exit actions of the Replication state.

QoS is performance-related requirements that very much
varies between domains but is being integrated into
frameworks such as RM-ODP and CORBA [30], [31].
UML diagrams can be used to depict QoS specification at
different levels such as those discussed in [32]. This work
presents how to model QoS requirements and QoS support
for the system with UML according to each RM-ODP
viewpoint. In the enterprise viewpoint, QoS-related
constraints or notes can be attached to the relationships
between actors and use cases, and between actors and high-
level objects in a collaboration diagram. In the information
viewpoint, QoS constraints can be defined on guards,
activities, and entry/exit actions on state transition of
information objects. For the computational viewpoint, a
sequence diagram and a statechart diagram support
specification of time constraints on interaction between
objects and on state transition respectively. Since UML
does not support stream (i.e. continuous media), systems
that require to model stream may add a boolean attribute
isContinuous to messages. Finally in the engineering and
technology viewpoints, QoS negotiations can be specified
as collaboration diagrams of QoS patterns which can be
applied to engineering components and mapped to a
component diagram for implementation technology. In
[33], a framework to manage a real-time system to reduce
timing faults is considered. In this framework, temporal
QoS is defined as tagged values, stemming from Real-Time
UML, where the value could be a list of values and include
operators. Examples of QoS attributes are QoS for methods
which includes worst case execution time and shortest
waiting time. QoS for messages includes message deadline,
message importance which influences the scheduling of
message execution, accepted degradation, e.g. accepted
number of execution per number of request messages, and
so on.

4. RM-ODP vs MDA
In previous sections, we mainly have discussed RM-ODP
and MDA approaches to system modelling and the use of
languages such as UML to express models. As already
mentioned, other proposals for development processes and
formal or graphical modelling languages are around, but
they remain as research efforts and have not been put into
real use. In this section, we continue with RM-ODP and
MDA and compare them on the following aspects:

• Is a development process

RM-ODP No, it is not by definition. It needs a process that
will create modelling artifacts in five viewpoints.

MDA Yes, it describes steps to build an architecture, but it
emphasizes on design and coding phases. Other phases in
the development are implicit.

• Define different views of the system

RM-ODP Yes, the system can be viewed from high level to
low level in five angles.

MDA Yes, the system can be viewed from high level to
low level, and also in each level, it can be modelled in
different angles (e.g. we may model PIM with class
diagrams for system structure and sequence diagrams for
interaction flows).

• Come with a modelling language

RM-ODP No, it needs other modelling languages such as
UML or formal specification languages to model its five
viewpoints.

MDA Yes, the primary modelling language is UML but
other languages are applicable as well.

• Support modelling of distributed system characteristics

RM-ODP Yes, by using UML profiles or OCL.

MDA Yes, by using UML profiles or OCL.

• Support reuse of patterns in modelling

RM-ODP Yes, models of basic ODP functions are
available and can be integrated with the system model.

MDA Yes, models of CORBA pervasive services and
vertical domain facilities are available and can be
integrated with the system model.

• Complexity

RM-ODP Consistency between viewpoints and how
different viewpoints can represent a single system are the
main complexities.

MDA Analogously to RM-ODP, consistency between
models and between UML diagrams that represent a single
level of the model are the main complexities.

• Automate development

RM-ODP No.

MDA Yes, it supports automatic or semi-automatic
generation of models and code.

• Application

RM-ODP Aims at large-scaled applications for any
application domains.

MDA Also aims at large-scaled applications for any
application domains.

• Accepted by distributed system community

RM-ODP Yes, but mainly research community especially
in Europe.

MDA Yes, in research and industrial community
worldwide.

• Strong points

RM-ODP Research is around for a long while and has
influences on standard technologies that support MDA
(e.g. CORBA, UML profile for EDOC).

MDA Flexible system modelling and evolution is
emphasized. It is embraced by industry and is built from
other industry standards. A lot of supporting tools will
come out.

• Weak points

RM-ODP It addresses only system modelling, not system
evolution. It has no modelling language so it is hard to
adopt by industry.

MDA Still immature in research and practice. No tools to
support full development and no real example that realises
the whole process yet.

It is difficult to say which is better between RM-ODP and
MDA, but that is not important. With the current focus of
research and industry community on MDA, it may be
advantageous if system designers beware of this new
promising idea and start exploring and adopting it. Even
though system designers will choose MDA over RM-ODP,
the latter will still be around. As mentioned earlier, RM-
ODP influences several technologies that support MDA.
The task forces that standardised those technologies even
had previously developed and researched in RM-ODP.
Recently, RM-ODP viewpoints have been mapped to PIM
and PSM of MDA [34]. That is, enterprise, information,
and computational viewpoints can be mapped to PIM
level, and engineering and technology viewpoints to PSM
level. This means RM-ODP modelling can be adopted by
MDA. The two modelling approaches, therefore, will
complement each other rather than compete with each
other.

5. Conclusion
This paper has discussed about RM-ODP and MDA as key
system modelling for building enterprise distributed
systems as well as UML as the major modelling language.
The survey has pointed out that modelling enterprise
distributed systems is a very much active research area as
substantial efforts have been made to identify drawbacks of
general development processes and a number of
specialisation have been proposed to accommodate specific
characteristics of distributed systems. Standard bodies are
actively standardising processes and modelling languages
for distributed applications and the final outcome will lead
to the adoption of the standard into commercial CASE
tools. However, standard modelling and tools are just
‘helping hands’ as they only provide guidelines and
facilities for designing and constructing the system. Good

development still requires experiences to project precisely
the requirements and the solution that answers them.

References
[1] I. Jacobson, G. Booch, and J. Rumbaugh, “The

Unified Software Development Process”, Addison
Wesley, 2000.

[2] ITU-T/ISO, “ITU-T X.901| ISO/IEC 10746-1 ODP
Reference Model Part 1: Overview”, 1995.

[3] J. Siegel et al., “Developing in OMG’s Model-
Driven Architecture”, OMG White Paper, November
2001.

[4] M.W.A. Steen and J. Derrick, “Formalising ODP
Enterprise Policies”, Proceedings of the 3rd
International Enterprise Distributed Object
Computing Conference, Mannheim, Germany,
September 1999, pp. 84-93.

[5] E. A. Boiten et al., “Constructive Consistency
Checking for Partial Specification in Z”, Science of
Computer Programming, 1999.

[6] H. Bowman et al., “Viewpoint Consistency in ODP:
A General Interpretation”, Proceedings of the 1st
IFIP International Workshop on Formal Methods for
Open Object-Based Distributed Systems, Chapman
& Hall, March 1996, pp. 189-204.

[7] G. Booch, J. Rumbaugh, and I. Jacobson, “The
Unified Modeling Language User Guide”, Addison
Wesley, 1999.

[8] ITU-T/ISO, “ITU-T X.903| ISO/IEC 10746-3 ODP
Reference Model Part 3: Architecture”, 1995.

[9] M. Born and A. Hoffmann, “An Object-Oriented
Design Methodology for Distributed Services”,
Proceedings of the 28th International Conference on
Technology of Object-Oriented Languages and
Systems (TOOLS 28), 1998, pp. 52-64.

[10] M. Born, E. Holz, and O. Kath, “A Method for the
Design and Development of Distributed
Applications Using UML”, Proceedings of the 37th
International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS-Pacific
2000), Sydney, Australia, November 2000, pp. 253-
264.

[11] J. Oldevik and A.-J. Berre, “UML-Based
Methodology for Distributed Systems”, Proceedings
of the 2nd International Enterprise Distributed Object
Computing Conference (EDOC’98), La Jolla, CA,
USA, November 1998, pp. 2-13.

[12] J. Warmer and A. Kleppe, “The Object Constraint
Language Second Edition: Getting Your Models
Ready for MDA”, Addison Wesley, 2003.

[13] D.S. Frankel, “Model Driven Architecture: Applying
MDA to Enterprise Computing”, Wiley, 2003.

[14] F. Bolton, “Pure CORBA”, Sams, 2001.

[15] A. Kleppe et al., “MDA Explained”, Addison
Wesley, 2003.

[16] OMG, “Common Warehouse Metamodel
Specification V1.1”, Document formal/2003-03-02,
2003.

[17] OMG, “MOF Version 1.4”, Document formal/2002-
04-03, 2002.

[18] OMG, “XML Metadata Interchange (XMI) V2.0”,
Document 2003-05-02, 2003.

[19] D.I. Donaldson and J.N. Magee, “Distributed System
Design Using CORBA Components”, Proceedings
of the 30th Hawaii International Conference on
System Sciences Vol. 1, 1997, pp. 4-13.

[20] M. Pradella et al., “A Formal Approach for
Designing CORBA Based Applications”,
Proceedings of the 2000 International Conference on
Software Engineering, 2000, pp. 188-197.

[21] H. Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML”, Addison
Wesley, 2000.

[22] OMG, “A UML Profile for Enterprise Distributed
Object Computing, Joint Final Submission Part II”,
Document ad/2001-08-20, 2001.

[23] X. Blanc, M.P. Gervais, and R. Le-Delliou, “Using
the UML Language to Express the ODP Enterprise
Concepts”, Proceedings of the 3rd International
Enterprise Distributed Object Computing
Conference, Mannheim, Germany, September 1999,
pp. 50-59.

[24] J.O. Aagedal and Z. Milosevic, “ODP Enterprise
Language: A UML Perspective”, Proceedings of the
3rd International Enterprise Distributed Object
Computing Conference, Mannheim, Germany,
September 1999, pp. 60-71.

[25] P.F. Linington, “Options for Expressing ODP
Enterprise Communities and Their Policies by Using
UML”, Proceedings of the 3rd International
Enterprise Distributed Object Computing
Conference, Mannheim, Germany, September 1999,
pp. 72-82.

[26] B.P Douglass, “Real-Time UML, 2nd Ed.”, Addison
Wesley, 2000.

[27] W. Fernandez-Medina, M. Piattini, and M.A.
Serrano, “Specification of Security Constraint in
UML”, Proceedings of the 35th IEEE International
Carnahan Conference on Security Technology,
2001, pp. 163-171.

[28] J. Putman, “Model for Fault Tolerance and Policy
from RM-ODP Expressed in UML/OCL”,
Proceedings of the 3rd IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing 2000 (ISORC 2000),
Newport, CA, USA, March 2000, pp. 189-196.

[29] J.L. Herrero, F. Sanchez, and M. Toro, “Fault
Tolerance as an Aspect Using JReplica”,
Proceedings of the 8th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS
2001), Bologna, Italy, October 2001, pp. 201-207.

[30] ISO/IEC, “ISO 6-10 Working Document on QoS in
ODP”, 1997.

[31] C. Sluman et al., “Quality of Service (QoS)”, OMG
Green Paper om/97-06-04, 1997.

[32] J.O. Aagedal and A-J. Berre, “ODP-Based QoS-
Support in UML”, Proceedings of the 1st
International Enterprise Distributed Object
Computing Conference (EDOC’97), Gold Coast,
Australia, October 1997, pp. 310-321.

[33] J.L. Contreras and J.L. Sourrouille, “A Framework
for QoS Management”, Proceedings of the 39th
International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 39),
Santa Barbara, CA, USA, July 2001, pp. 183-193.

[34] R. Bendraou et al., “From MDA Platform-Specific
Model to Code Generation: Coupling of RM-ODP
and UML Action Semantics Standard”, Proceedings
of the 2004 International Conference on Software
Engineering Research and Practice (SERP’04), Las
Vegas, Nevada, USA, June 2004.

Twittie Senivongse received her B.Sc. in
Statistics (2nd class honour) from
Chulalongkorn University in 1989, M.Sc in
Computing Science from University of
London (Imperial College), UK in 1992
and Ph.D. in Computer Science from
University of Kent, UK in 1997. She is at

present an associate professor at Department of Computer
Engineering, Chulalongkorn University. Her main research
interest is distributed object technology including
middleware architectures and management issues such as
service discovery, service evolution, and information
systems integration.

Yunyong Teng-amnuay works on varied
topics in information systems: operating
systems, distributed systems, security,
library automation, and networking. He is
the coordinator of the Information Systems
Engineering Laboratory (ISEL) of the
Department of Computer Engineering,

Chulalongkorn University. He graduated from Master of
Computer Science from Chulalongkorn University in 1979
and Ph.D. in Computer Science in 1984 from Iowa State
University.

Natawut Nupairoj received B.Eng.
Degree in Computer Engineering from
Chulalongkorn University, Thailand, in
1990. He received the M.S. and Ph.D.
degrees in Computer Science from
Michigan State University, USA, in 1993
and 1998 respectively. Currently, he is a

lecturer at Department of Computer Engineering,
Chulalongkorn University. His research interests include
Parallel Processing, Distributed System, and Computer
Networks.

