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ABSTRACT - This paper studies a traffic grooming in wavelength-division multiplexing (WDM) mesh 
networks for the SONET/SDH streams requested between node pairs. The traffic could be groomed at the 
access node before converting to an optical signal carried in the All-Optical network. We design a virtual 
topology with a given physical topology to satisfy multiple objectives and constraints. The grooming problem 
of a static demand is considered as an optimization problem. The algorithms found in the literatures focus on 
a single objective either to maximize the performance or to minimize the cost. We propose a Multi-Objective 
Evolutionary Algorithm to solve a grooming problem that optimizes multiple objectives all together at the 
same time. In this paper we consider the optimization of three objectives: maximize the traffic throughput, 
minimize the number of transceivers, and minimize the average propagation delay or average hop counts. 
The simulation results show that our approach is superior to an existing heuristic approaches for the 6-node 
benchmark network in an acceptable running time.  
KEYWORDS - Multi-Objective Evolutionary Algorithm, Grooming, WDM, mesh optical networks, Pareto 
Optimal. 
 

 

1. INTRODUCTION 
A grooming is a process of multiplexing low-speed traffic 
onto the high-capacity pipe. It is a challenging technology 
that could cut costs, improve the protection and decrease 
provisioning time in the Optical network. While the Optical 
switch can handle up to OC-768, the electronic switching 
technologies at the access node can only feed the rates much 
lower than the full capacity of the Optical network. 
Therefore, the grooming is the right solution to lower this 
gap. 

Literatures on grooming are mainly based on a ring topology. 
However, the studies in [1] to [4] purposed the grooming in 
the WDM mesh network. In [1], they formulated a grooming 
problem as the ILP with the objective to maximize the static 
traffic throughput. In [2], they studied the grooming that 
reduces the number of transceivers in optical networks. The 
studies in [3] and [4] consider a dynamic traffic pattern in a 
WDM mesh network. 

Our research work is on the traffic grooming in WDM mesh 
networks with static traffic demand that is similar to [1]. It is 

considered as an optimization problem. The main purpose is 
to design the virtual topology that optimizes both a 
performance and a cost. The objectives include a 
maximization of a throughput as found in [1], a minimization 
of the network cost like number of transceivers as found in 
[2] and a minimization of the average propagation delay of 
the lightpaths. To achieve these objectives, we propose a 
multi-objective evolutionary algorithm to search for the 
solution. 

The structure of the remainder of this paper is as follows. 
Section II presents mathematical formulation of the virtual 
topology design in the traffic grooming problem. Section III 
explains the Multi-Objective Evolutionary Algorithm in 
general. Then in Section IV, we propose how to apply the 
MOEA for the traffic grooming problem. Section V shows 
the performance of our approach comparing to the heuristics 
on a 6-node network. The conclusion of our approach and 
suggestions for the future work are in Section VI. 
 
 



2. PROBLEM FORMULATION 
With a given physical topology and traffic demand, we 
classify the traffic grooming into three subproblems: a light-
path routing, a traffic routing and a wavelength assignment 
subproblems. The lightpath routing subproblem is the routing 
of lightpaths on the physical topology. The traffic routing 
subproblem is the routing of low-speed traffic on the virtual 
topology under the limitation of the number of transceivers. 
The wavelength assignment subproblem is the assignment of 
wavelengths to the lightpaths under the Distinct Color 
Assignment (DCA) constraint and Wavelength Continuity 
constraint. The DCA constraint states that lightpaths on the 
same fiber link must be assigned with the distinct colors. The 
Wavelength Continuity constraint states that a lightpath must 
occupy the same wavelength along the links that it spans. The 
Wavelength Continuity constraint could be relaxed by 
deploying the wavelength conversion that allows the 
lightpaths to switch to any wavelengths at the links. 

We maximize the performance in term of the traffic through-
put or the successful routed traffic and we minimize the cost 
in term of the number of transceivers or number of lightpaths 
(one lightpath requires two transceivers, one at each end). 
Besides, we minimize the average propagation delay and the 
average hop count of the lightpaths. In the high-speed 
networks, the propagation delay is a dominance delay while 
the queuing delay is neglected. The lengthy fiber causes not 
only a considerable delay but also the impairments such as 
the noise accumulation, fiber chromatic dispersion, 
polarization, mode dispersion and fiber non linearities. Also 
the more hop counts of lightpath in the physical topology, the 
more switch ports at the intermediate nodes. 

We assume that all nodes are capable of grooming low speed 
traffics to the available capacity of a lightpath as many as 
needed and a transceiver is free tuned to any wavelengths. 
The architecture of a node is presented in [1]. We do not 
allow the demultiplexing of OC-x lower than its capacity 
when routing through the optical network. A bifurcate route 
of multiple streams through the network is allowed. 
Mathematical formulation of the virtual topology design 
related parameters, variables, constraints and objectives are 
given below: 
 
Given Parameters:  

• N :   Number of Optical nodes. 
• W : Number of Wave lengths that can be 

multiplexed on a single fiber i.e., the DWDM 
capacity. 

• Ti :  Number of Transmitters at node i; Ti  ≥ 1 ∀i  
• Ri :  Number of Receivers at node i; Ri ≥ 1 ∀i 
• K :  Number of shortest paths or alternative routes. 
• P :  Physical topology matrix. 
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where Pmn is the number of fibers between node m and node 
n. Note that: Pmn = Pnm. 

• Λ: N×N  traffic demand matrix 
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where x

sdΛ  is the demand of low speed streams, OC-x, 
between node s and node d; x ∈ {1, 3, 12}. 
 

• dmn: Propagation delay weight factor on fiber link 
from node m to n. The dmn relies on the length of 
fiber. 

 
Variables: 

• 
k

wmnij ,,σ : An indicator representing the existence of 
lightpath where 
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• Vij :  The number of lightpaths from node i to 
node j in the virtual topology. 

• x
ijsd ,λ : The number of OC-x streams from node s to 

node d being routed on the lightpath Vij . 
• C :  The capacity of a lightpath e.g., C = 48 for      

OC-48. 
• 

x
sdS :  The number of OC-x streams requested from 

node s to node d that are successfully routed. 
The traffic is blocked if x

sd
x
sdS Λ< . 

 
Constraints: 

• Traffic (Multicommodity-flow equations for 
lightpath routing): 
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Equation (1) allows a lightpath to have any wavelengths 
in each link along the path. It implies that wavelength 
converters are available at all nodes. Otherwise, if we 
need to preserve the Wavelength Continuity rule, Equations 
(1), (2) and (3) will become Equations (4), (5) and (6) 
respectively. 
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• Wavelength Constraints: 
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Equation (7) ensures that distinct channels (lightpaths) on the 
same fiber link cannot be assigned the same wavelength. 
Note that lightpaths ij using different fibers between link mn 
are known to be on different paths in K. 
 

• Resources: 
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Equation (8) ensures that the number of lightpaths originate 
from node s is not greater than the number of transmitters at 
that node. Likewise Equation (9) ensures that the number of 
lightpaths terminated at node d is not greater than the number 
of receivers at that node. 
 

• Traffic (Multicommodity-flow equations for traffic 
routing): 
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• Capacity Constraint 
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Objectives: 

1) Maximize traffic throughput 
 

∑ ×
sdx

x
sdSxMax

,

)(                               (15) 

 
 

 
 

Figure 1. The pareto front and feasible solution area, F, of 
two objective functions. 

 
 
2) Minimize number of transceivers or lightpaths 
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3)  Minimize Average Propagation Delay (APD) 
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Note that Equation (17) becomes Average Hop Count of 
lightpaths if dmn = 1, ∀mn. 
 

3. MULTI-OBJECTIVE 
EVOLUTIONARY ALGORITHM 

The Multi-objective Optimization (MO) or 
multicriteria/multiperformance/vector optimization problem 
involves simultaneous optimization of several competitive 
objectives. In MO, there is a set of optimal solutions that are 



superior (dominated) to other solutions in the search space 
when considering all objectives. The set of optimal solutions 
is known as a Pareto Optimal set. The solutions in the Pareto 
set are non-dominated solutions comparing to each other. 
Most MO algorithms use the concept of domination to search 
for the Pareto Optimal set. The definition of domination is 
defined in Definition 1 below. 

Definition1: Given “ ” be the operator such that fk(x)  fk(y) 
if a solution x = (x1,x2,...,xm)  is a better solution than a 
solution y = (y1,y2,...,ym) for the k

th
 objective and m  

parameters (decision variables). The “better” means “less 
than” in case of minimization or means “greater than” in case 
of “maximization”. 

If there are n objectives, a solution x is said to dominate a 
solution y if 

∀i ∈ {1, 2, … ,n} :  fi(x)   fi(y)   ∧ 
∃i ∈ {1,2,...,n}: fi(x)   fi(y)  

 
In words, a solution x is said to dominate a solution y (or x is 
non-dominated by y) if 1 and 2 are true: 

1) The solution x is no worse than y for all objectives, 
2) The solution x is strictly better than y in at least one 

objective. 

The plot of non-dominated solutions in Pareto set will form 
the Pareto front. The Pareto front for the minimization on 
both objective functions, f1(x) and f2(x) is shown in Figure 1 
where the F area denotes the feasible solutions area. Note that 
the Pareto front needs not be convex. 
 

 

Figure 2. The MOEA-operation diagram. 
 
 

There are many methods to search this set of solutions or 
Pareto optimal set. One of the traditional approaches is the 
aggregation method. It combines the objectives into a scalar 
function and applies the single-objective-optimization 
methods like a simulated annealing, a stochastic local search 
or a tabu search on it. The approach of combining objectives 
includes the weighting method [5], the constraint method [5], 
the goal programming [6] and the minmax method [7]. 
Although the aggregation methods are simple and applicable 
to the single objective methods but they cannot generate all 
members of the Pareto optimal set with non-convex Pareto 
front. Also the weighting factor in weighting method is quite 
subjective rather than straightforward and difficult to define. 
Moreover, each run of the algorithm will produce only a 
single solution. They require multiple runs to compare the 
domination in order to construct the Pareto optimal set. 

Other methods for multi-objective optimization are the 
Evolutionary Algorithms called Multi-Objective Evolutionary 
Algorithm (MOEA) that simulates the process of natural 
evolution using a class of stochastic optimization methods. 
These methods are able to capture a Pareto optimal set in a 
single run. Moreover, they are less susceptible to the shape or 
continuity of the Pareto fronts. Therefore it is able to search 
on a problem with non-convex Pareto front. Most MOEAs 
are modified from the single-objective evolutionary 
algorithms like Genetic Algorithm. Therefore, the operations 
of MOEA include a population initialization, an evaluation, a 
fitness assignment, a reproduction (selection), a crossover 
and a mutation. Figure 2 shows the MOEA-operation 
diagram. 

 

Figure 3. The SPEA fitness assignment diagram. 



There are several approaches in the MOEA such as the 
Vector Evaluated Genetic Algorithm (VEGA) [8], the Multi-
Objective Genetic Algorithm (MOGA) [9], the Non-
dominated Sorting Genetic Algorithm (NSGA) [10], Strength 
Pareto Evolutionary Algorithm (SPEA) [11] and Niched 
Pareto Genetic Algorithm (NPGA) [12] but the SPEA is the 
most efficient one. 

4. MOEA FOR THE TRAFFIC 
GROOMING 

We implemented MOEA for a traffic grooming problem 
using SPEA which outperforms other MOEAs as stated in 
[11]. The SPEA is a Pareto-based approach like MOGA, 
NSGA and NPGA which implement the Pareto-based fitness 
assignment strategy to determine the reproduction probability 
of each individual. The SPEA maintains the set of non-
dominated solutions in the separated population. Hence, there 
are two populations, the dominated population tP  of size N  

and the external non-dominated population tP  with the 

limited size of N , where t denotes the tth generation. The 
SPEA maintains the external population of the Pareto optimal 
solutions to reserve the elites in every generation. It assigns 
scalar fitness called strength (i.e., Si in Figure 3) to external 
population tP  and assigns fitness (i.e., Fj in Figure 3) to 

dominated population tP  based on the domination and 
strength values. The size of non-dominant solutions in Pareto 
front, N , is controlled by a clustering algorithm such that 
less crowded elites are kept for the next generation. The 
selection or reproduction is a binary tournament selection 
procedure with better fitness values. A crossover operator and 
a mutation operator are applied to the mating pool as usual. 
We summarize the SPEA fitness assignment sub-operations 
in Figure 3. The first step is to find the non-dominated 
solutions within tP  and then copy them to the external non-

dominated population tP . Thereafter, some of the copied 

solutions may dominate the existing solutions in tP . 

Therefore the dominated solutions found in tP  must be 
deleted. This is to ensure the non-dominated solutions are 
kept in tP  and carried through the next generation (elitist 

property). In the next step, it maintains the size of tP  i.e., the 

number of solutions in tP  must be less than or equal to N . 
Otherwise, the clustering algorithm is performed to reduce 
the size of tP  to N . The clustering algorithm is based on the 
Euclidean distance. At the beginning, each solution itself is a 

cluster. Thereafter, two clusters with the minimum cluster-
distance are merged into a bigger cluster. The merging is 
repeated until the number of clusters is reduced to N . Next 
the number of solutions in each cluster must be reduced to 
one. The algorithm keeps the solution which has the 
minimum average distance from other solutions in the cluster 
and deletes the others in that cluster. After the size of tP  is 
reduced, the fitness called Strength is assigned to each 
solution in tP  and tP  by the equations shown in the final 
block of Figure 3. Note that we consider a two-objective 
minimization problem, so a smaller fitness represents a better 
solution. The detail of the SPEA algorithm can be found in 
[11] and [14]. We retain the main algorithm of the SPEA but 
modify the objective functions to exploit it for the traffic 
grooming problem. 

For the traffic grooming problem, the solution is a virtual 
topology with the objectives that maximize the throughput in 
Equation (15), minimize the APD in Equation (17) and 
minimize the number of transceivers in Equation (16). These 
competitive objectives are evaluated (by the definition of 
domination) and incorporated in the fitness assignment 
process as shown in Figure 3. For example, if we consider 
Equation (15) and Equation (16), a solution x is said to 
dominate a solution y if 1 and 2 are true: 

1) The solution x has equal or higher throughput than that 
of y and uses equal or lower number of transceivers 
than that of y. 

2) There exists one objective that the solution x is better 
(not just equal) than that of y (in term of higher 
throughput or lower number of transceivers). 

 
We create the Pareto front of the traffic grooming problem 
with a shape that is the same as in Figure 1. Thus we modify 
the problem by converting the first objective to a 
minimization objective by minimizing the negative value of 
the throughput instead. So it becomes two-objective 
minimization problem. The genome or individual is an 
encoded virtual topology which is presented here as our 
solution. We encode the solution by the string of N × (N − 1) 
elements, where N is the total number of nodes in the optical 
network. The first element presents the lightpaths from node 
0 to node 1, the second element for node 0 to node 2, the third 
element for node 0 to node 3 and so forth. Each element 
contains Ti unit of path indexes from node i to node j where   
i ≠ j and Ti is the number of transmitters at node i. Each path 
index presents the physical route of a lightpath. If the path 
index k

th
 = 0, there is no lightpath on that transmitter. 

Otherwise, the lightpath is using the kth path. The path index 
between node i and j is pre-calculated based on the K-shortest 
paths over a physical topology or by the random alternative 



paths. The set of shortest paths or alternative paths is 
calculated in advance with regard to the given physical 
topology. Figure 4 shows an example of genome encoding 
where the number of transmitters is equal to 3. There is one 
lightpath from node 0 to 1 using the first transmitter with path 
index = 1. 
 

 

Figure 4. An example of genome encoding. 
 
After generating the virtual topology, we adjust the number 
of transmitters to satisfy the resource constraints by 
eliminating a lightpath which occupies the lightest traffic at 
each source node until the constraint is satisfied. We do the 
same process with the number of receivers’ constraints at 
each destination node. 

Then we perform the Traffic Routing and the Wavelength 
Assignment separately. Since the genome does not encode 
the traffic route and the assigned wavelength (otherwise, the 
size of genome and the search space will be too large), we 
route the traffic and assign wavelength based on our 
heuristics. We route the traffic over the virtual topology of 
genome using the shortest path algorithm. The routing begins 
with the OC-12 demands first, followed by OC-3 demands 
and OC-1 demands. Bifurcate routing is allowed only in each 
demand level itself (i.e., an OC-12 demand cannot break into 
four OC-3s to route separately.) We route traffic streams as 
many as possible over a single hop of lightpath first. The 
remaining traffic after that is routed over multiple hops of 
lightpaths. 

We number the entire wavelengths (colors) and keep them in 
a stack one for each fiber link. If the wavelength continuity is 
considered, we assign the lowest available number 
(comparing to every stack that is on the lightpaths pan) to the 
lightpath that has the maximum hop-count (physical hop) first 
and so on. Otherwise, without wavelength continuity 
constraint, we assign the lowest color number found in each 
link’s stack to the lightpath. We set a penalty function to the 
genome if any of the lightpaths in the genome cannot assigna 
color. That is to downgrade the fitness value of genome and 
cause it to be eliminated in the next generation. The fitness is 
set by the successfully routed traffic (in negative value) 
routed over the virtual topology and the number of 
transceivers (i.e., the number of lightpaths). The result of the 
SPEA is the external population representing the Pareto front. 
It contains all Pareto Optimal solutions. Another benefit of 
MOEA over ILP is that MOEA can generate the set of non-

dominate solutions in a single run while ILP generates the 
solution one at a time. Moreover, when solving two 
objectives in ILP, we need to set one objective as a constraint 
while optimizing the other one. The MOEA generates the 
Pareto front or set of non-dominate solutions. One needs a 
policy to pick up a preferred solution along the Pareto front. 
We do not present the policy how to pick a right grooming 
solution on the Pareto front since we do not define the 
weights of the objectives. However we pick the solution 
according to the comparison criteria with the heuristics’ 
results shown in the next section. For example, when 
comparing the throughput with the same number of 
transceivers, we pick the solution on the Pareto front that has 
the same (or lower) number of transceivers as with the 
heuristics’ solutions and compare the throughput. 

 

Figure 5. The 6-node network topology. 
 

Table 1. Traffic matrix of OC-1 streams. 

Node 0 1 2 3 4 5 
0 0 5 4 11 12 9 
1 0 0 8 5 16 6 
2 14 12 0 9 6 16 
3 4 11 15 0 1 5 
4 10 2 3 3 0 9 
5 2 1 8 15 13 0 

 
Table 2. Traffiic matrix of OC-3 streams. 

Node 0 1 2 3 4 5 
0 0 6 2 1 5 4 
1 8 0 8 6 7 8 
2 1 3 0 0 2 7 
3 5 7 3 0 2 6 
4 6 4 5 0 0 2 
5 5 4 4 2 0 0 

 

Table 3. Traffiic matrix of OC-12 streams. 

Node 0 1 2 3 4 5 
0 0 1 1 1 0 0 
1 1 0 1 1 0 2 
2 0 1 0 2 1 0 
3 2 0 2 0 2 0 
4 1 2 0 2 0 1 
5 1 1 2 2 2 0 



5. SIMULATION AND 
NUMERICAL RESULTS 

In this section, the performance of our approach method 
is presented. We set up the experiment using the 6-node 
network and traffic demands found in [1]. The 6-node 
network physical topology is shown in Figure 5 and the 
traffic demand matrices are shown in Tables 1-3. 

We compare the result with two heuristics, the MST 
(Maximizing Single-Hop Traffic) and the MRU (Maximizing 
Resource Utilization), presented in [1]. The MST intends to 
construct the lightpaths between node pairs ordered by 
demand from the highest one. The MRU intends to construct 
the lightpaths between node pairs ordered by the resource 
utilization value which is a proportion between node pair 
traffic and its hop count. We modified their heuristics to 
include the number of transceivers and the average hop count 
of lightpath in the results for our comparison. The heuristics’ 
results are varied from the results in [1] because the shortest 
path algorithm may select the different paths if there are more 
than one shortest paths with the same hop counts. We re-ran 
their heuristics with their traffic demand matrices, OC-1,  
OC3 and OC-12, to calculate the number of transceivers for 
our comparison. Also we found out that the ILP results in [1] 
is 5% less than the optimum. That makes our approach better 
than that of the ILP presented in [1]. The simulations are 
varied by the resource constraints i.e., the maximum 
transceivers per node, T, and the maximum wavelengths per 
fiber, W. We ran the MOEA with the population size = 100, 
the probability of crossover = 0.8, the probability of mutation 
= 0.01, the number of generations = 5000 and the alternative 
paths K = 4. 
 

 
 

Figure 6. The Pareto front of grooming using MOEA  
where T = 4 and W = 4. 

 

 

First, we show the Pareto front of the grooming problem. 
Since the Pareto front in Figure 1 is between two 
minimization objective functions, we change the throughput 
to its negative value. Therefore, the graph in Figure 6 is the 
Pareto front of grooming problem that minimizes the 
(negative) throughput and minimizes the number of 
transceivers. Figure 6 is the MOEA grooming of multi-hop 
traffic with wavelength continuity constraint where T = 4 and 
W = 4. 

Next, we compare the results among the MOEA with 
wavelength conversion (WC), the MOEA without WC, the 
MST and the MRU in term of the maximum multi-hop 
throughput as shown in Table 4. It illustrates that the MOEA 
with WC outperform other approaches (except the MOEA 
with WC at T = 3, W = 3, which the better solution may not 
yet be found within 5000 generations). Since the wavelength 
conversion allows the flexible routing of lightpaths, i.e., 
relaxes the wavelength continuity constraint, it produces 
better results. However, the MOEA with the wavelength 
continuity is still superior to the heuristic approaches. 

Next, we compare the results of the MOEA, the MST and the 
MRU in term of multi-hop throughput with the same number 
of transceivers (with wavelength continuity constraint). Since 
the MOEA maximizes the throughput and minimizes the 
number of transceivers simultaneously, it produces better 
results (higher throughput) than that of the heuristic 
approaches as shown in Table 5. 

Next, we perform the MOEA (with WC) with three objective 
functions to maximize the traffic throughput, to minimize the 
number of lightpaths, and to minimize the APD. We assume 
that dmn = 1 ∀m, n. Therefore, the APD is equivalent to the 
average hop counts of the lightpath. Again we compare the 
results with the MST and the MRU. We pick solutions in the 
Pareto front of MOEA results to compare with heuristics in 
term of the three objectives as shown in Table 6. We can see 
that MOEA provides better and higher throughput, lower 
number of transceivers and lower APD or equivalent results 
comparing to the heuristics. 

Finally, we show the processing time of the MOEA running 
on the Linux, Pentium based PC 500 MHz. In the worst case 
of W = 3, T = 7, the MOEA with wavelength conversion 
takes 306 seconds and the MOEA without wavelength 
conversion takes 301 seconds. In the worst case of W = 4,     
T = 5, the MOEA with wavelength conversion takes 317 
seconds and the MOEA without wavelength conversion takes 
316 seconds. 

 
 
 



Table 4. Maximum throughput comparison. 

MOEA (with WC) MOEA MST MRU 
 

Throughput #Transceivers Throughput #Transceivers Throughput #Transceivers Throughput #Transceivers 
T=3 W=3 OC-739 18 OC-751 18 OC-69917 17 OC-65017 17 
T=4 W=3 OC-937 24 OC-934 24 OC-89622 22 OC-90923 23 
T=5 W=3 OC-969 26 OC-969 26 OC-93524 24 OC-92024 24 
T=7 W=3 OC-969 26 OC-969 26 OC-93524 24 OC-92024 24 
T=3 W=4 OC-749 18 OC-739 18 OC-69917 17 OC-65017 17 
T=4 W=4 OC-946 24 OC-946 24 OC-92223 23 OC-92023 23 
T=5 W=4 OC-988 25 OC-988 26 OC-98828 28 OC-98828 28 

 
Table 5. Throughput and number of transceivers comparison. 

MOEA MST MRU 
 

Throughput #Transceivers Throughput #Transceivers Throughput #Transceivers 
T=3 W=3 OC-712 17 OC-699 17 OC-650 17 
T=4 W=3 OC-896 

OC-920 
22 
23 OC-896 22 OC-909 23 

T=5 W=3 OC-944 24 OC-935 24 OC-920 24 
T=7 W=3 OC-956 24 OC-935 24 OC-920 24 
T=3 W=4 OC-714 17 OC-699 17 OC-650 17 
T=4 W=4 OC-931 23 OC-922 23 OC-920 23 
T=5 W=4 OC-988 26 OC-988 28 OC-988 28 

 
Table 6. Throughput, number of transceivers, and APD comparison. 

MOEA MST MRU 
 

Throughput #Transceivers APD Throughput #Transceivers APD Throughput #Transceivers APD 

T=3 W=3 707 
659 

17 
17 

1.29 
1.12 699 17 1.41 650 17 1.12 

T=4 W=3 896 
909 

22 
23 

1.45 
1.30 

896 22 1.45 909 23 1.30 

T=5 W=3 947 24 1.33 935 24 1.42 920 24 1.33 
T=7 W=3 947 24 1.33 935 24 1.42 920 24 1.33 
T=3 W=4 712 

650 
17 
17 

1.41 
1.12 

699 17 1.53 650 17 1.12 

T=4 W=4 926 23 1.43 922 23 1.48 920 23 1.39 
T=5 W=4 988 26 1.46 988 28 1.46 988 28 1.46 

 
 

6. Conclusion and Future Work 
In this paper, we proposed the Multi-Objective Evolutionary 
Algorithm approach for the traffic grooming problem in 
WDM Optical mesh networks. It maximizes the throughput, 
minimizes the number of transceivers, and minimizes the 
average propagation delay at the same time. We formulated 
the traffic grooming problem and proposed the MOEA 
method to the traffic grooming problem with the encoding, 
routing, and wavelength assignment schemes. We plotted the 
two objectives graph to show the Pareto front of the 
grooming problem and then we ran the simulation to compare 

the results with the results of heuristic approaches, MST, and 
MRU. The comparison results showed that MOEA performs 
better in any cases than that of two heuristics with the 
acceptable processing time. The MOEA can be applied to the 
network revenue model to reduce other costs while increasing 
the performance since the number of objective functions can 
be extended. 
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