s

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 581

Design and Evaluation of Feature Interaction Filtering
with Use Case Maps |

I 2 2 I
Pattara Leelaprute , Masahide Nakamura , Ken-ichi Matsumoto and Tohru Kikuno

Graduate School of Information Science and Technology, Osaka University, Japan
{pattara, kikuno}@ist.osaka-u.ac jp

2
Graduate School of Information Science, Nara Institute of Science and Technology, Japan
{masa-n, matumoto}@is.aist-nara.ac.jp

ABSTRACT- Feature interaction (FI, in short) is a functional conflict among multiple
telecommunication services, which is never expected from services in isolation. Detecting all possible Fis
is an expensive and even infeasible task, due to the combinatorial explosion in the number of service
combinations and scenarios. To reduce the cost of FI detection, FI filtering is known as a low-cost process
conducted prior to FI detection, which identifies FI-prone service combinations. However, each FI-prone
combination usually contains many service scenarios. Deriving only Fl-prone scenarios in the
combination makes the FI detection process more efficient.

This paper proposes a new FI filtering method consisting of two phases. The proposed method
extensively uses the requirement notation Use Case Maps (UCMs). We characterize each service by a
stub configuration of UCMs. The stub configuration is formalized as a matrix form, called SC-matrix.
With the SC-matrix, Phase 1 derives FI-prone service combinations. Next, in Phase 2 we derive the FI-
prone scenarios based on two heuristics: (H1) FI tends to occur when two (or more) services are
activated, or (H2) FI tends to occur when a service by passes a feature of the other service.

Through a practical experiment, we have evaluated the proposed method with respect to; scenario
coverage, filtering quality and reduction ratio in the number of scenarios.. The result showed that the FI-
prone scenarios obtained successfully covered all scenarios that lead to actual FIs. Also, the proposed
method derived only 10% of the total number of scenarios as FI-prone ones, which implies that 90%
reduction of the cost for the scenario investigation was achieved.

KEY WORDS - Feature Interactions, Telecommunication Services, FI filtering, Use Case Maps

1. Introduction In practical service development, the analysis of feature
interactions has been conducted in an ad hoc manner by
In recent years, as seen in the Advanced Intelligent subject matter experts. However, as the number and
Network [32], Mobile Network, the Next Generation IP complexity of services grow, the ad hoc analysis does not
Network [22] and such, communication networks have work in a feasible way, which leads to time-consuming
gone through a phenomenal evolution. Owing to these service design and testing without any interaction-free
developments, communication services are diversifying guarantee.
from the conventional “Call waiting” and “Call forwarding
when busy” to multimedia services such as electronic mails Much rescarch has been conducted' 10 tackle' the FI
[12], video-conferences, and WEB services [29, 34]. The problem [17]. Most Of, the communication services are
flood of services results in functional conflicts which are usually modeled by finite state machines: ,FSMS' In thl?
never caused by a single service alone. These conflicts are model, 2 global state consisting of user’s local states
widely recognized as Feature Interaction [5, 33] (FI, for successively moves to the next state by the occurrence of a

short). The FIs seriously hamper the development of new pser’s event [27, 31], and Fls are defined on ‘certain states
services [6]. Detecting all possible Fls among complex in the FSM where some undesirable properties hold. The

. . © i is t merat ible
services requires a significant cost due to the nature of way to detect Fls in the FSM is to enumerate all possibl

ot . i i ndesirable states that cause Fls [6, 7,
communication services; concurrency, branches of complex states and to identify undes [6,

. . . o 10, 19]. The advantage of this model is that it can detect all
scenarios, and the massive number of service combinations. > C.
existing FIs. However, due to the concurrent characteristics

582 | NECTEC Technical Journal Vo.5, No.16

of telecommunication services, the number of states in the
model becomes exponential in the face of the number of
services and users. This is called the state explosion
problem.

Thus, research that aims to reduce the number of states
exists. Cameron et al. [6] proposed the tool CADRESFI
which utilizes state abstraction based on heuristics.- Static
FI detection methods that do not have to enumerate
reachable states in the state transition model also exist. By
using Petri Net to reduce the transition states, Nakamura et
al. [23] proposed the P-invariant and Kawarazaki et al. [16]
proposed the T-invariant. Yoneda et al. [30] reduced
complexity by wusing the structure of a rule-base
specification, STR (State Transition Rules) [15, 27], and
Harada et al. [13] proposed the detection algorithm EXH
for rule-base specification.

As an alternative approach to reducing the cost of FI
detection, Kimbler [20] proposed a low-cost method called
FI filtering, which is conducted before the FI detection
process. FI filtering indicates whether or not the
combination of services is likely to cause FI, or has a
possibility in causing FI. Therefore before FI detection, we
concentrate on only combinations that are likely to cause F1
(Fl-prone). Moreover, in each FI-prone combination, there
exists several scenarios, some of which are not relevant to
the actual FIs. Hence, deriving only relevant scenarios from
the Fl-prone combinations helps us to concentrate on the
problematic scenarios in the latter process.

This paper proposes a new FI filtering method at the
requirement stage of telecommunication services and
features. Implementing FI filtering at the requirement stage
is more efficient for eliminating FI at the former process,
the requirement stage (the service design stage) than at the
latter process, the coding and execution processes [16]. We
employ a requirement notation method, called the Use Case
Maps (UCMs) [2, 4]. So far, several notations have been
proposed. Aho et al. [1] proposed an event-base language
known as “Chisel” at the requirement level. Chisel’s well-
defined semantics based on trace equivalence provided the
framework for FI detection, but it is unable to describe the
concurrent behaviors of its characteristics. Also, because
the feature addition is performed by “gluing nodes” in the
chisel diagram, the scenario of the entire system cannot be
seen. For the other service description methods, SDL
(Specification and Description Language)[28], LOTOS
(Language Of Temporal Ordering Specification) [3, 9] and
STR [15, 27], are also proposed. However, these are formal
description methods which should be adopted at the
specification level. Therefore, it is not quite easy to apply
them directly to the requirement level, in which system
details are not yet determined.

The reasons we chose UCMs for FI filtering are
summarized as follows: (1) in the entire picture of global
call scenarios at the requirement level, UCMs do not
require understanding the details of system behaviors or

complicated semantic models. (2) in concurrencies,
alternatives and hierarchical designs which are
indispensable to requirements level notation can be easily
achieved with UCMs, (3) the tool called UCM navigator
[8] necessary for syntactically correct UCM notations is
provided.

The proposed F1 filtering method consists of two phases. In
the first phase, we identify Fl-prone service combinations.
Next, in the second phase, we derive Fl-prone scenarios
from each Fl-prone combination.

In UCMs, we use the concept of stub plug-in to add
features into a basic call model (or POTS — Plain Ordinary
Telephone Service). Specifically, we describe the basic call
scenarios in the top-level UCMs, which are called a roor
map. Then we represent supplementary features as a set of
sub UCMs, which are called submaps. Next, we put them
into places (called stubs) in the root map to extend or
modify the basic call. The key idea for the first phase is to
characterize each service by a stub configuration in the root
map, and then see how the stub configuration changes
according to the service combination. To facilitate the
representation of the stub configuration and feature
combination, we propose the stub configuration matrix and
a combination operator of the matrices. Consequently, the
first phase derives one of the following verdicts for each
feature combination: (a) FI occurs, (b) FI never occurs and,
(c) Fl-prone.

At the second phase, we derive FI-prone scenarios from the
Fl-prone combinations of the two services. The derivation
method is based on two heuristics: (H1) FI tends to occur in
scenarios where both services are activated, and (H2) FI
tends to occur in scenarios when the activation of one
service bypasses the activation of the other service.
Deriving only the scenarios relevant to the potential Fls
makes the FI detection process efficient.

As an experimental evaluation, we conducted FI filtering
and subsequently scenario derivation on the 8 types of
services taken from the FI Detection Contest held at the
International Conference FIW2000 [21]. We evaluated the
proposed method from the viewpoints of coverage, filtering
quality and scenario reduction ratio. As a result, we
confirmed the legitimacy of the proposed method, since all
actual Fl-occur scenarios are covered by the derived FI-
prone scenarios. Also, if a feature combination does not
have any scenarios derived by Heuristic H1 or H2, then the
combination does not cause actual FIs. Therefore, we can
improve the filtering quality by concluding such
combinations to be (b) FI never occurs. It was also shown
that the derived scenarios were only 10% in the total
number of scenarios. Thus, the proposed method was able
to filter 90% of the irrelevant scenarios, which implies a
significant cost reduction of the scenario investigation.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 583

2. Feature Interaction

In the literature, the terms “features” and “supplementary
services” are often used interchangeably. We use feature to
refer to a set of service functionalities that extend or modify
the basic call.

2.1 Feature Examples

Throughout this paper, we use the following features as
examples.

(a) Calling Number Delivery Blocking (CNDB): This
service blocks the provision of the caller’s number at
the terminating side. Suppose that user x subscribes to
the CNDB, when x dials y, x’s telephone number will
not appear on y’s telephone.

(b) Terminating Call Screening (TCS): This service allows
a subscriber to screen incoming calls based on a
screening list. Suppose that user x registers y in the
screening list, then any call from y to x would be
screened.

(c) Call Forwarding on Busy (CFB): A subscriber of this
service can forward incoming calls to another pre-
determined number when the subscriber is busy.
Suppose that user y sets the forwarding number to z,
and that y is busy. If x dials y, then the call would be
forwarded to z and x would be connected to z.

(d) Reverse Charging (RC): This service is known as
freephone billing, and allows the subscriber to be
charged for the calls in which the subscriber is the
terminating party. Suppose that user y subscribes to the
RC, when x dials y, y will pay the telephone charge
instead of x.

(e) Splitting Bill (SB): This service allows the sharing of
costs between the partners in a call. A company might
provide local call charge lines to customers as a
service, in which case the customer (the originator of
the call) pays the local charges and the company pays
the rest. Suppose that user y subscribes to the SB-and
allows the originator who calls y to only pay the local
call charge. When x dials y, x will pay the local call
charge and y will pay the rest of the long-distance call
charge.

2.2 Practical Examples of Feature Interactions

Let us look at practical examples of Fls. In the following,
A, B, C denote actual users. Note that these FIs do not
occur if the services are used in isolation.

FI-(a) — Interaction RC & SB: Suppose that B sub-
scribes to RC and SB. If 4 dials B, it cannot be
determined that the call should be charged 100% to B
by the function of RC, or charged by the rule of the
payment of SB which B had set.

FI-(b) — Interaction TCS & CNDB: Suppose that B
subscribes to TCS and puts A’s telephone number on
the screening list, and that 4 subscribes to CNDB.
Now, if 4 dials B, because of the call number delivery
blocking function of 4, B can not screen the incoming
call from A4 because B cannot know whether or not the
phone number of incoming call is 4°s.

FI-(¢) — Interaction CFB & RC: Suppose that B sub-
scribes to RC, and that 4 subscribes to CFB and sets
the forwarding address to B. If C dials 4 when 4 is
busy, then CFB forwards the call to B. When 4
forwards the call to B, the RC function is bypassed,
and thus inactivated. As a result, 4 has to pay the call
charge, although B is the freephone subscriber.

3. Use Case Maps for Service
Description

3.1 Basic Principles

Use Case Maps' (UCMs in short) is a requirements
notation method designed to bridge the gab between the
requirement (use cases) written in the natural language and
the detailed design written in some strict specification
language.

UCMs describe a system by a set of scenario paths with
causally-ordered responsibilities (events). In this paper, we
briefly review some concepts used in this paper. Additional
details can be found in [2, 4].

(a) The core notation consists of only scenario paths and
responsibilities along the paths. A path starts at a
starting point (depicted by a filled circle) and ends at
an end point (shown as a bar). The starting point can
be associated with a precondition and the end point can
be associated with a postcondition, both of which are
represented in square brackets []. Between the start and
end points, the scenario path may perform some
responsibilities along the path, which are depicted by
crosses ? with labels. Responsibilities are abstract
activities that can be refined in terms of functions,
tasks, procedures, events, and are identified only by
their labels. Tracing a path from the start to the end is
used to explain a scenario as a causal sequence of
events.

(b) Several paths can be composed by superimposing
common parts and by introducing fork and join. There
are two kinds of forks/joins. One is the OR-fork/join,
describes alternative scenario paths, which mean that
one of the paths is selected to proceed at each branch.
The other type is the AND-fork/join, depicted by
branches with bars, which describes concurrent
scenario paths.

IStrictly speaking, the UCMs discussed here are unbound UCMs without
system components shown explicitly since this paper focuses on the
requirements entities for FI filtering.

584 | NECTEC Technical Journal Vo.5, No.16

(c) A stub plug-in concept allows UCMs to have a
hierarchical path structure, to defer details, and to
reuse the existing scenarios. A stub, depicted by a
dotted diamond, identifies a place where path details
in the UCM are described by other UCMs, called
submaps (or sub-UCMs). On the other hand, the UCM
with the stub is called a root map (or root-UCM). In
this paper, we assume that submaps are not allowed to
contain stubs. This assumption is for simplicity, and
will be relaxed in future research.

A submap can be plugged into a stub in a root map.
This is done by binding the start and end points of the
submap to the corresponding entrances and exits of the
stub in the root map, respectively, in accordance with
labels on the start and end points.

3.2 Describing Services by UCMs

In the domain of telecommunication services, such as the
ones in IN (Intelligent Networks) [32], sophisticated
service functions are usually implemented by a basic
service and its supplementary services (features). In the
telephony services, the basic service is known as the basic
call model (or POTS - Plain Ordinary Telephone Service).
The basic service is the base for every supplementary
service; the addition of supplementary services is achieved
by the reuse of almost all the functions, as well as partial
alteration or extension of the basic service.

Focusing the basic/supplementary service provision, we
make use of the UCMs to describe the service. First, we
describe the basic call model as the root map of UCMs.
Second, for the scenario of the basic service, we plug the
default submap® into the root map. Finally, we describe the
supplementary services as the submaps of UCMs, and plug
them into the root map to make changes to the default
scenario.

3.2.1 Basic Call Model Figure 1 represents UCMs for the
basic call model according to the second FI detection
contest specifications [21]. This basic call model is the so-
called global call model of the end-to-end view [11], which
contains both the caller’s and the callee’s scenarios in one
model.

There are eight UCMs in Figure 1 and each is identified by
a name (identifier), e.g. root, defs. The responsibilities in
the diagram are those explained in [21]. Symbols 4, B, C,
D refer to constants representing actual users (subscribers).
Symbols ¥, W, X,Y are variables to which constant values
are assigned dynamically. In this example, 4 is the caller,
whereas Y is the callee. Since Y is a variable, the callee may
change depending on the destination of the call. When A
calls B, for instance, then Y is B.

2For convenience, we call the submaps for basic call scenarios default
submaps.

For instance, take UCM defs in Figure 1(b). This UCM
explains a scenario where busytoneA occurs. Each scenario
path can be associated with a pre-condition. The pre-
condition is a condition for the path to start with. For
example, a pre-condition “[4= idle]” in root represents the
scenario which starts only when 4 is idle.

An example of an OR-fork would be, UCM def| in Figure
1(b), which contains an OR-fork describing two possible
scendrios: “dialtoned occurs, and the scenario ends at
outi1”’or “dialtoneA occurs, and the scenario ends at
out12”. It is also possible to explicitly specify conditions
for path selection. This is done by wusing guards,
represented with square brackets [] at the OR-fork. For
example, a guard [Y = idle] at an OR-fork in a UCM root
implies that the scenario proceeds to the upper path when Y
is idle.

As an example of AND-fork/join, in the upper part of UCM
Root Map in Figure 1, one AND-fork and one AND-join
appear between out4] and in61. After out4l, two scenario
paths start concurrently. As a result, ringbackY and alertA
are performed in any order (by interleaving semantics). The
concurrent paths are synchronized at the AND-join, and
then the scenario ends before in61.

For the example of the stub plug-in, the root map in Figure
1(a) contains seven stubs. All other UCMs are submaps.
Let us plug a submap def, into stub 1 in root. The starting
point inll is connected to the stub entry i/nll, and end
points out11 and our12 are connected to the exits out11 and
outl2, respectively. Similarly, other submaps def; (2 <i <
7) are plugged into the corresponding stubs i (2 < i < 7),
which completes the whole scenario path structure of the
basic call model.

3.2.2 Supplementary Features As mentioned in
subsection 3.2, adding the supplementary features extends
the scenarios of the basic call model. In our framework, this
is achieved in a simple way by using the stub plug-in
concept of UCMs. Intuitively, we only replace some
default submaps with specific ones, called feature submaps
which describe the features’ scenarios. In this subsection,
we explain only how to add each single feature at a time to
the basic call. Adding multiple features is achieved by
combining the individual features using a combination
operator @. This operator will be presented in Section 5.

Figure 2 shows feature submaps for the features presented
in Section 2.1. Each submap has a name (identifier) with an
index which represents a stub location of the root map to be
plugged into. For example, let us add SB to the basic call.
Adding SB to the basic call is done by plugging feature
submaps sbV; in Figure 2 into stub 2 of the root map in
Figure 1(a). As a result, def; is replaced by sb¥> and all
other submaps def; (i = 1, 3, 4, 5, 6, 7) remaining to be
reused in the corresponding stubs.

rvm«mw -~

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 585

root

ofthookA [outi2 [Y=idle]

100 et mil o ot “‘“'
I gutid ynl outliing Jutil
< > 2 LY QL

PPN L J— D
1 . 0 L]
.

**dialay -

Pre-Condition: [A is idle]

ourgy COMMECAY

mt} e, sortll >¢

‘6'.s-x— ol
*ofthookY

stopalerta " disconnect

in7l @ out?l
272
onhookA ~,

out?2

(a) Root Map

onrdl

get) vl tef» dets cefy
Galtone A
il onei ;-,.;;.—l i ms:.———lmsx il P,
Pre-Condition: Pre-Condition: Pre-Conditios: Pre-Condition:
[oefault} [defaunlt? [default] [defauit]
gefs deiy et cef+
TOtoneA)
busiiones [timeout
S sl ol oursd =7 .‘"—_—I ourTi
Pre-Condition.: Pre-Conditon; Pre-Condition:
[gefaun] [ceZault] {gefault]
(b) Submaps

Figure 1. Use Case Maps for the basic call model

ondbA 3 tesV’

se1A.aNoNTmons
! s

serY fwgi\7y

1A% sy
billing renerseA Y billing splitA Y

sl ST el w3l .—)(——Iaa:.‘.’ mai .——)(——I:mr:f
chKTCGlist 5
Pre-Condition: Pre-Condition: Pre-Concition 7"~ Pre-Condition: Pre-Condition’
[rroe] Y = TCS subscriberi=\"v, [Y = CFB subscriberi=\"y] [V = RC subseriberi=\'j] [Y = 3B subscriber =\"}
ia)y CNDB ib) TCS ic CFB (d}RC {e)SB

Figure 2. Submaps for supplementary features

In UCMs, a stub is allowed to contain multiple submaps,
whose selection can be determined at run-time according to
a submap selection policy >, which helps to describe
dynamic situations in scenarios. The selection policy is
usually described with pre-conditions of submaps. When
there are several submaps for one stub, the submap whose
pre-condition takes true value is chosen to be plugged into
the stub. If two or more preconditions hold simultaneously,
then we cannot decide which submap should be plugged in.
This is a problematic situation called non-determinism [24]
and it must be avoided. For convenience, let pre(f;) denote a
precondition of a submap f..

3In this sense, the stubs discussed here are called dynamic stubs, strictly
speaking.

Let us illustrate how to plug multiple submaps into a stub.
For example, suppose that B is an SB subscriber. In case of
B subscribing to this service, B can set the percentage of
the telephone charge he/she wants to pay. If B sets to pay
the long-distance call charge for the originator, when the
caller A makes a call to B, 4 pays only the local call charge
and B will pay the remaining long-distance charge. When 4
calls C, however 4 pays all of the call charges normally.
Thus, the call scenario dynamically changes depending to
whom 4 makes a call.

To explain this, let us take a submap sb¥, shown in Figure
2. The variable V in sb¥> represents an SB subscriber. We
assign a value B to V. Then, the submap sbV; and its pre-
condition pre(sbV,) = [Y = V] are instantiated to sbB, and
[Y = B]. sbB, is plugged into stub 2 only when (Y = B]
holds, i.e. the callee Y is B. On the other hand, a submap

586 | NECTEC Technical Journal Vo.5, No.16

def, in Figure I(b) is also for stub 2, which describes
default scenarios in the basic call. The pre(def;) is a default,
which means def; is plugged in when none of the other
submap’s preconditions hold. One of sbB; or def; is chosen
to be entered in stub 2 depending on whom A4 calls (see
Figure 3). This shows that SB applies only when A4 calls B.
If the callee Y is C, the call proceeds to the default scenario.

cef~ sbB >
billing_:piA B
."r._'I.—I o2l .‘v_'xH__I ourd}
Pre-Congdition: Pre-Concinton:
[gefaulr] {B = SB subscriber]

[Y#Q\,/Y:B]

.
---—" B '---.
in2i &~ 0wl
.

Figure 3. Plugging two submaps into one stub

For different submaps f; and g, if pre(f;) and pre(g;) hold
simultaneously, then the submap selection policy does not
work correctly. When two pre-conditions are satisfied at the
same time, a non-deterministic behavior occurs regarding
which of £; and g; should be chosen to be plugged into stub
i. If pre(f;) and pre(g;) are not simultaneously satisfiable, we
say that f; and g; are mutually exclusive, denoted by mex(f; ,
g:). In general, since UCMs do not force any formalism on
pre-conditions, evaluating these UCMs without human
input is difficult.

Therefore, we assume that for any pair /, and g; given, the
scenario designer can always tell whether mex(f; , g;) holds
or not. All the submaps for the same stub must be mutually
exclusive to achieve a consistent selection policy.

For instance, since def; and sbB; are mutally exclusive as
shown in Figure 3, mex(defs , sbB;) holds. However, rcB,
and sbB, are NOT mutually exclusive, since both
preconditions of rcB; and sbB; are [Y = B] (See Figure 2).
As a result, scenarios in rcB, and sbB; cause non-
determinism when [Y = B] holds. The nondeterministic
behavior is well known as a typical situation of Fls [24].

4. Characterizing Feature Interaction

Researchers agree on an informal definition of FI: FI
occurs iff combining multiple features changes the
requirements properties of each feature in isolation. The
definition is not formal enough to perform FI detection.
Hence, researchers have been trying to give formal
definitions of FIs. As a result, different definitions are
proposed for different FI detection frameworks.

However, the aim of this work is not to present an FI
detection method, but to propose an FI filtering method,
which is supposed to be a quick and rough evaluation
deployed before the FI detection process. In order to make
the proposed method generic, i.e. applicable to different FI

detection frameworks, we briefly characterize FIs by a
necessary condition and a sufficient condition with respect
to call scenarios of users.

Let us consider again the informal definition above. First,
we can say that the requirement properties do not change
unless each user’s call scenario changes. So, if FI occurred,
some call scenarios must have been changed by the feature
combination. Therefore, we have:

Condition C1 If FI occurs, then the combination of
multiple features changes some user’s call scenarios in
an individual feature.

All Fls in Section 2.2 can be explained by Condition C1. In

every example, the user’s call scenarios have been changed

somehow by feature combination.

Next, we focus on a typical type of FI, called non-
determinism [24]. This type of FI occurs when the feature
combination changes a call scenario in a way that multiple
scenarios can be triggered in the same condition. Note that,
however, not all Fls are caused by this non-determinism.

Condition C2 If a combination of multiple features enables
different call scenarios to be performed under
the same conditions, then FI occurs.

A typical FI characterized by C2 is FI-(a), as shown in
Section 2.2. Note that the reverse of each condition does
not necessarily hold. Thus, our characterization of FI by the
above conditions is relatively weak. However, the
characterization is essential in performing FI filtering with
low cost.

5. Phase 1: Identifying FI-prone
Feature Combinations

We have 2 phases in our proposed Feature Interaction
Filtering. The key idea of the first phase is to categorize
each service according to the stub configuration, devise the
service scenario for each user, and see how each stub
configuration changes according to a concurrent execution
of multiple features. For this purpose, we propose a matrix
representation of the stub configuration, called the SC-
matrix. With the SC-matrices, the first phase derives one of
the following verdicts for each feature combination: (a) FI
occurs, (b) FI never occurs and (c), Fl-prone. Next, at the
second phase, we derive Fl-prone scenarios from the FI-
prone combinations.

5.1 Stub Configuration Matrix (SC-matrix)

The stub plug-in concept in UCMs enables us to isolate
specific scenarios of features from common scenarios. That
is, the specific scenarios for a feature are given as a set of
feature submaps, while the common scenarios are given as
a root map with default submaps, into which the feature
submaps are plugged. We can then characterize features in
terms of stub configurations, i.e. information regarding
which feature submap is plugged into which stub in the root

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 587

map. In this section, we propose a matrix representation,
called a stub configuration matrix (SC-matrix), to
characterize features.

pefinition 5.1 Let SM denote the set of all given submaps.
A muatrix element is recursively defined as follows: (a) f €
SM is a matrix element, (b) if p and ¢ are matrix elements
consisting of submaps plugged into the same stub, then p/q
are matrix elements, where | is a deterministic choice
operator.

The matrix elements are regarded as expressions in the
language composed by submap identifiers and operator |.
These elements are used to represent which submaps are
plugged into each stub. A matrix element f; | /3 |...| f means
that exactly one submap f; of f;,..., f; is deterministically
chosen and plugged into the stub, according to a certain
selection policy. Consider again the UCMs in Figure 1 and
2. Then, for instance, def, sbB,, rcB, and def;|sbB, are all
matrix elements.

Next, we express the configuration of all stubs in a root
map, in terms of a vector representation, which intuitively
describes a subscriber profile.

Definition 5.2 Suppose that a given root map has » stubs. A
stub configuration vector (or simply SC-vector) is an n-
dimensional vector & = [hy, ..., h,], where h; is a matrix
element for i-th stub.

Consider again all UCMs in Section 3. Let us briefly
characterize 4’s scenarios for individual features, in terms
of an SC-vector.

In this UCM, when the user does not subscribe to any
feature, his/her scenario is characterized by an SC-vector:

[def\, defs, defs, defy, defs, defs, def7]

This SC-vector means that, all of the default submaps are
plugged into the stub of the root map.

First consider the stub configuration where 4, who is the
caller, subscribes to the originating feature; the feature that
is activated only when 4 makes a call. Let us take CNDB
as an example of the originating feature. In this case,
submaps cndbAs is plugged into stub 3, and all other stub i
contain the default submap def;. Hence, 4’s scenarios are
characterized by an SC-vector:

[def,, defr, cndbAs, defs, defs, defs, def7]

Next, consider the stub configuration where B, who 1s the
callee, subscribes to the terminating feature; the feature
that is activated when B accepts a call. Let us take TCS as
an example of the terminating feature. When B subscribes
to TCS, then the caller’s scenario is characterized by:

[def,, defz, cndbAs, defi|tcsB,, defs, defy, def7]

where the inclusion of fcsB; or def, is determined by

whether A4 calls B or another user who does not subscribe to
TCS.

Thus, the individual features on 4’s scenarios are concisely
characterized by SC-vectors.

In order to represent clearly all possible user scenarios, we
replicate the root map for each user’s scenarios, as shown
in Figure 4. The replication of the root map makes sense,
since common scenarios described in the root map are the
same for all users, due to the “equivalently-served”
constraint [25]* in telecommunication services. The stub
configuration describes the allocation of feature submaps to
stub in the root maps of all users. Accordingly, the SC-
vector is extended to a matrix form, called the SC-matrix.

Definition 5.3 Suppose that a given root map has n stubs,
and that we have m users. A stub configuration matrix (or
simply SC-matrix) is an m x n-dimensional matrix:

?hl ‘7 ?hll hlZ hln ‘7
7,7 9 ?
H= ’)hZ 9 — ?hzl hZZ th 9
M ?TM M .. M
72?7 ? ?
?hm ? ?hml hmZ hmn ‘7

where 4; is an SC-vector for the i-th user, and 4; is a matrix
element for the j-th stub in the i-th user’s root map. Usually
an SC-matrix for a feature is specified on the basis of the
feature named F and of its subscriber u. For convenience,
we introduce a notation F, to denote an SC-matrix where
the user u subscribes to feature F.

For example, consider all submaps in Figure 1(b) and
Figure 2, and root maps in Figure 1(a). Here we suppose
that there are three users, 4, B and C, as introduced in [21].
Since the root map has seven stubs, the SC-matrix isa 3 x 7
matrix. Let us express the stub configuration where 4 is a
CNDB subscriber. Submaps cndbA; is plugged into stubs 3
in A’s root map. Similarly we can describe the stub
configuration that B is a CNDB subscriber just by swapping
A4 and B.

ef, def, cndbA, def, def, def, def,?
CNDB, =ldef, def, def, def, def, def, def,)
?:3def, def, def, def, def; def, defﬁ:}
def, def, def, def, def, def, def,?
CNDB, = lef, def, cndbB, def, def, def, def,)
def, def, def, def, def, def, def,3

By looking at the matrix row-wise, we can visualize how
each user’s scenario is configured, under a certain feature
subscription. Next, let us give an SC-matrix, TCSp:

“Suppose that A and B subscribe to the same feature F. Therefore, A and B
are guaranteed to be able to use F in the same way.

588 | NECTEC Technical Journal Vo.5, No.16

def, def, def, def,|icsB, def; def, def,?
TCS, = Xef, def, def, def, def; def, def,]
3def, def, def, def,|icsB, def, def, def,}

AL iTenarig

Caller A
Callee Bar C
[I VA LS R '7:‘, l
L <. KaN

B« ccenarnio
Caller B
Callee Cora|!

C’s scenasio
Caller C
Callse AorB|:

@ e 2 ’
Lrl=iims /
- Pt

-"4:; def4[tc:B4
bl crubl stubl ostubd smbs crubo smb?

woer A defl. def2, def3. defdjrc:B. defs. deo. def?
wer B| defl.def2. defd. defd. defs.deb. def?
wier C|_defl. def2. def3, defdicsB. defs. deo, def?

Figure 4. Extending a root map for three users (when B
subscribes to TCS)

Note that B’s subscription to TCS affects call scenarios of
both 4 and C, since TCS applies when A4 (or C) calls B (i.e.
the condition [Y = B] holds). Here, we do not consider the
case where B calls him/herself. Therefore, B follows the
default scenario. Figure 4 shows a correspondence between
the root maps and the SC-matrix 7CSp. The shaded stubs
represent the submaps for TCS, which are plugged into
those stubs.

One useful guideline for systematically constructing an SC-
matrix is to classify the features into two categories:
originating features or terminating features. The
originating features are the features whose subscriber is on
the caller side, while terminating features are the features
whose subscriber is on callee side. In our example, CNDB
is the originating feature, whereas TCS, SB, RC and CFB
are the terminating features [21)]. Note that the root map in
our example is described from the caller’s point of view.
Subscribing to originating features affects the scenarios of
only the subscriber. On the other hand, subscribing to
terminating features affects the scenarios of all users,
except the subscriber. Based on this observation, let us give
SC-matrices RCp and SBjp:

ef, def,|rcB, def, def, def, def, def.?
RC,=idef, def, def, def, def, def, def,’
Yef, def,|rcB, def, def, def, def, def.3
2ef, def,|sbB, def, def, def, def, def.0
SBy = yef, def; def, def, def, def, def-
Uef, def,|sbB, def, def, def; def, def,3

Note that it is possible to represent feature configurations
for arbitrary subscribers in terms of SC-matrices. This
representation is accomplished by instantiating feature
submaps with a value of the subscriber and allocating such
submaps to appropriate rows of the SC-matrix. For
instance, RC¢ can be obtained from RCy by swapping the
second and third rows, and by letting V' = C instead of V =
B in submap rcV,.

5.2 Feature Combination

Once each individual feature is characterized by an SC-
matrix, we combine different configurations, in order to
examine FI filtering between multiple features. The
combination is carried out by a well-defined SC-matrix
combination as shown in this section. First, we define the
combination operator for two submaps:

Definition 5.4 Suppose that f and g are given submaps,
which can be plugged into the same stub in a root map. Let
def denote any default submap describing the basic call
scenarios. Let ng > denote a special identifier not contained
in the given submaps. Then, a combination of / and g,

denoted by f ? g, is defined as follows:

flg=g7=

f (if f=g) (A1)
§ £ (f g=def) (A2)
2/ 18 (if[f=gl, If, g # def] and [mex(£,)]) (A3)

Ing (if[f=gl [fg=defland [7 mex(fg)]) (Ad)

The intuitive semantics of the combination is explained as
follows: (Al) a combination of the same submaps yields
the same submap, (A2) a feature submap f can override a
default map for the basic call scenario, (A3) two different
feature submaps can be composed with a deterministic
choice when f and g are mutually exclusive and (A4) two
different feature submaps cannot be plugged into the same
stub when f and g are not mutually exclusive, since a non-
deterministic behavior arises between fand g.

5
The ng here stands for “no good”.

Then, the combination operator is extended for matrix
elements containing “|”, by the following definition:

o

Definition 5.5 Let p =f, | foi...|fiandg =g, | g.|...| g be
matrix elements. Then, the combination of p and ¢ is

defined by applying - to all pairs of submaps f; and g; :

pl=1"%|/7%1K|f % (AS)

The following proposition is useful for simplifying the
combination results.

Proposition 5.6 Let p, ¢ and r be matrix elements. The
following properties are satisfied: (B1) p|p =p, (B2) p| g =
q/ p, (B3) 0| 9)|r=pl(q|), (B4) p|ng = ng.

For example, consider SC-matrices RCz and SBj in the
previous section. Let us compose two matrix elements
def>[/rcB; and def>{sbB,, with respect to stub 2.

(defyfrcBy) - (defs/sbB;)

= def, * defy] def> - sbB, [rcB, - def, [rcB, - sbB, (AS)
= def,/ sbB, [rcB; [rcB; - sbB, (A2)
= defsf sbB, [rcB; Ing (A4)°
=ng (B4)

Here, we can define a combination operator of SC-
matrices as:

Definition 5.7 Let " and G be given SC-matrices. Then, the
combination of F and G, denoted by F @ G, is defined as
F®G=1[f] ®lgyl =1f; - g combination of two SC-
matrices is carried out by applying - to each pair of
corresponding matrix elements. For instance, let us
compose TCSz and CNDB, shown in the previous
subsection 5.1.

TCS,? CNDB, =

Wef, def, def, def,|tcsB, def, def, def,?
def, def, def, def, def, def, defy
def, def, def; def,|tcsB, def; def, def,3
oef, def, cndbA, def, def, def, def,
? Yef, def, def, def, def, def, def;)
Idef, def, def, def, def, def, def,3
ef, def, cndbd, def,|tcsB, def; def, def;?
= Mef, def, def, def, def, def, def;)
3def, def, def, def,|tcsB, def, def, def,3

6Note that the precondition of rcB2 and sbB2 are both [Y=B], i.e.
Y mex(rcB2,sbB2), see Figure 2(d) and (¢), and replace V with B.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 589

5.3 FI Filtering

We assume that a root map, a set of default submaps, sets
of submaps for features, and SC-matrices for individual
features are given.

Figure 6 depicts the correspondence between matrix
combination and related root maps. The stubs depicted by
shaded diamonds represent that some feature submaps are
plugged into the stubs.

First, we provide two theorems used for the proposed FI
filtering method. These theorems are derived from the FI
characterizations (Condition C1 and C2) presented in
Section 4. Let F and G be given SC-matrices, and let
H=F® G. Let f;, g; and h; be i-th rows in F, G and H,
respectively.

Theorem 5.8 If there exists ng in H, then FI occurs (non-
determinism).

Proof: By Definition 5.4, an ng entry appears in H iff a
submap f; in F and a submap gy in G are not mutually
exclusive. Since f; and g; are plugged into a stub j
simultaneously, different scenarios are possible under the
same (pre-)condition with respect to user i. According to
Condition C2, we can conclude that FI occurs.

The example in Figure 6(a) illustrates the verdict (a) “FI
occurs” for the combination of RCs and SBg. After the
combination, an ng entry appears in stub 2 of A’s and C’s
root map. This is a non-deterministic interaction: “Suppose
that B subscribes to RC and SB. If 4 calls B, should the call
be charged 100% to B by the function of RC, or should the
call be charged by the rule of payment of SB, which B had
set”.

Theorem 5.9 If [h; = f; or h; = g;] holds for all i, then FI
does not occur.

Proof: Each row in an SC-matrix is an SC-vector that
characterizes one user’s scenario. The condition [k; = f; or
h; = g;] holds iff for user i, the stub configuration 4; yielded
by the combination had been already expected in the
individual feature F (=f}) or G (=g;). This fact means that no
stub configuration is changed by the combination. Hence,
no scenario change occurs with respect to the user 7. If the
condition [A; = f; or h; = g;] holds for all i, then no user’s
scenario is changed by the combination. According to a
contraposition of Condition C1, we can conclude that FI
never occurs.

The example in Figure 6(b) illustrates the verdict (b) “FI
never occurs” between TCSz and CNDBjg. The condition
[h; = f; or h; = g;] holds for i = 1, 2, 3 (for users 4, B, C). In
this case, the scenarios of users 4 and C had been expected
in TCSp before the combination, whereas the scenarios of
user B had been found in CNDB;. As a result, no scenario
change occurs, and thus we can conclude that there is no

590 | NECTEC Technical Journal Vo.5, No.16

With the above theorems, we finally present the filtering
method (Phasel) in Figure 5. The method gives one of the
verdicts: (a) FI occurs (non-determinism), (b) FI never
occurs, (¢) Fl-prone, for two given SC-matrices F and G.

Feature Interaction Filtering Method (First Phase)

Input: Stub configuration matrices
242 ?7g,?
2.2 2372
F = 2 M7 and G = 2 M7
33 32,9

Output: One of the following verdicts
(a) FI occurs (non-determinism).
(b) FI never occurs.
(c) Fl-prone.

Procedure:
Step1: Make a composed matrix
20, ?
7P
H= 9 M7 =F?7G
W,

Step2: If some ng elements exist in H, conclude
(a) FI occurs (by Theorem 5.8). Otherwise, go
to Step 3.

Step3: For each row h; of H, check a condition [&; = f;
orh; =g

Step3-1: If the condition holds foralli (1 <i <
m), conclude (b) FI never occurs (by
Theorem 5.9). Otherwise,

Step3-2: Conclude (¢) Fl-prone.

Figure 5. Feature Interaction filtering method

Since Theorems 5.8 and 5.9 at Steps 2 and 3 can be
checked easily, the filtering procedure is quite simple and
easy to use. Step 1 is used simply for making a composed
matrix H from F and G. Step 2 is used to check the non-
determinism caused by the combination by Theorem 5.8.
Step 3 is used for checking if any scenario changes occur
due to the combination using Theorem 5.9. If we reach Step
3-2, this means that non-determinism does not exit, but
some scenarios change in the combination. We cannot
definitely conclude the existence of FI at this point. The
verdict is “FI-prone” and some detection method has to be
employed.

The example in Figure 6(c) is for the verdict (c) “FI-prone”
between TCSy; and CNDB,. Due to the combination, user
A’s scenarios have been changed, which can be interpreted

as follows: “Suppose that B subscribes to TCS and sets 4 to
the screening number, and that 4 subscribes to CNDRB.
Since A subscribes to CNDB, A4’s number may not be
displayed on B’s telephone. Therefore, the screening
function of B may not work properly.” Whether this is ap
F1 or not depends on the exact definition of FI adopted in
the subsequent detection process. The only thing we can
say here regarding filtering process is that the system is F|-
prone. Note that even if the feature combination is the same
(as in Figure 6(b)), we can still get a different verdict
depending on who the subscribers are.

The proposed filtering method is applied to all possible
combinations of SC-matrices, derived from given features.

The number of combinations increases combinatorially
with the number of users and features. However, the
number of combinations can be reduced by using
symmetry. For example, if we have analyzed a combination
TCSz © CNDB,, then we no longer need to try TCS; @
CNDB, since all subscribers of a feature can use the
feature in the same way. Due to space limitations, the
detailed definition of symmetry is omitted here. Interested
readers can refer to relevant papers [18, 25].

Note that we have only shown the example where one user
subscribes to only one feature at a time. However, the
proposed method can be used when one user subscribes to
more than two features as well. Suppose that user A
subscribes to feature f, g and k. In this case, the
combinations to be analyzed will be, f/® g, g ® h and /@ .
Generally for n features, the number of the combinations
will be ,C,.

6. Phase 2: Deriving FI-prone
Scenarios

In the second phase, we derive Fl-prone scenarios from the
(c) Fl-prone combinations. The Fl-prone service
combinations do not always cause actual FIs. To make the
FI filtering more accurate, we derive the scenarios which
may be relevant to actual Fls. For this, we propose two
heuristics on the scenario paths.

6.1 Observations on FI-prone Scenarios

In the first phase of FI filtering, the verdict of Fl-prone is
derived by Condition Cl (in Section 4). That is, some
user’s scenarios in the root maps have been changed by the
feature combination. What we have to consider next is how
the scenarios change and which scenarios have the potential
of Fls.

Let us consider again the examples FI-(b) and FI-(¢) in
Section 2. As shown in Figure 7(I), FI-(b) occurs in a
scenario where B subscribes to TCS and B puts A’s
telephone number on the screening list, A subscribes to
CNDB and calls B while B is idle. In this scenario, both
TCS and CNDB services are activated.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 591

ool
sbB>
.

oMeolA TalAY

"C‘Cl's

S

T00Ie rooie rogt,
B> 51{53 NG
by . .
[i e o—-—q;«?-' o—-—'l%
wexeeic e wneeke dize 7 armeir” &

>

dell, def) defd defd cefs des def? cefl def2 def3 defd defs, de6, def? defl cef defi def: defs dee, def?

f1. def2}rcB2 def3 defd cefs des def? defl def2[sbB2, def3, defl defS des. def? defl, NG def3 def: def3 deb daf?
defl defljrcB2, def3. defd defs des def? cefl def2fsbBl def3 defd defS des def? defi. NG def3 deii def~ det, def?

(a) RCR® SBg = Floccurs

.T‘Oof_\

[framepixfziens

- ~

5

-
L S S P o
— | ezexsTesE T

recte

cn
TS
oo Al Y

defl def2 cef: defd, cell des def? cadbB2 deli defs des del? deft def2 cadtB3 i1 def% de6, cef?

|:def1 def2 cef defificsBA. defS ceo cel? Gefr, defl defs deo def? defl def2 def: ceilftcsBd defs, deo def”
defll def2 cef? defitcsBd defs cee caf? defl cell defi defi cefS des def? defl def2 def: celijtcsBl, defs ded cef?

(0) TCSg®CNDBgR = Flnever occurs

roor,
| ot oAb,
semeoka tila §
rociy I
Pt ?
()| v s =
roste rooie
~ a
gy e 2 : [o]
ot0ext e ¥ * ecruaoke eist ¥
cefl, defi, cef3 defdjicsB, defs dee cel? del. defl cndbAl defi cefX, deo. def? 1, def2 cndbAl defljcsB= def: det ce
defl def> cdef3 defd, def3 det. def? defl def2 def3 defl defS ce6 def7 def1 def> defd defs defS deo, def
cefl, def2 def3 defifcsB4 defs deo gef? £l def2 defl defd defS de6, def? fi def2 defd defitcsBd defS deo def?

(c) TCSR®CNDB 5 = FI prone

Figure 6. lllustrative examples of FI Filtering

592 | NECTEC Technical Journal Vo.5, No.16

Next, Fl-(¢) occurs in a scenario where 4 subscribes to
CFB and sets the forwarding address to B, and B subscribes
to RC (see Figure 7(11)). If C calls 4 when 4 is busy, CFB
of 4 is activated and A creates a new path to originate the
new call to B directly without passing the RC feature of B.
As a result, in this scenario, a feature of RC which allows
the subscriber B to be charged for the calls, is not activated
because of the activation of CFB of 4. Thus, we can see
that the activation of RC is bypassed by the activation of
CFB. Examining many other practical examples, we have
reached the following observations of Fls.

A B e
<= [
B i
0og) CXDE| TCs

both features scuvated
(I) FI-(tb) TCSy and CNDB,,

A sbus B
= =
ooo 71| o
B

C bypassed
=
it

I FI-¢c) CFB, and RCy

Figure 7. The example of FI-(b) and Fl-(c)

Observation 1: FI tends to occur in scenarios where two
different features are sequentially activated.

Observation 2: FI tends to occur in scenarios where the
execution of one feature bypasses the execution of the
other feature.

The above two observations will be mapped into the two
heuristics defined on the scenario paths of UCMs, in
Section 6.4.

6.2 FI-prone Root Map

Each FI-prone combination obtained in Phase 1 has
multiple root maps, each of which corresponds to a user.
From them, we first pick up only root maps that contain
problematic scenarios. Specifically, we only pick up the
root maps whose stub configurations is changed be-
fore/after the service combination.

According to Condition C1 (see Section 4), the Fl-prone
scenarios must be contained in a root map in which the stub
configuration is modified by a feature combination. For
instance, let us take Figure 6(c). For this combination, Fl-
prone scenarios must be contained in root, only, but neither
in rootz Nor rootc.

d:alA B
i) _ diala Y _ ':> .
&1AC
def dcf
(b) @] .—x—x‘l & —

{default] -

'd-efaulr\, / cond.’

sl)

Trond]

-

Figure 8. Expanding dynamic elements

6.3 Expansion of Dynamic Elements in
Scenarios

If a root map contains dynamic elements such as variables
and dynamic stubs, a scenario path can represent multiple
scenarios dynamically depending on run-time conditions
(see Section 3). In such a situation, we have to consider
both the scenario path structures and the runtime
conditions, simultaneously.

To avoid confusion, we eliminate the dynamic elements by
expanding them into static ones, before deriving Fl-prone
scenarios. In the resulting root map, a scenario path exactly
corresponds to a concrete scenario. Therefore, we can only
concentrate on the path structure to derive FI-prone
scenarios. The elimination of the dynamic elements is
performed by replacing the dynamic elements with
branches (fork/join) for all possible conditions, which is
specifically described below.

For responsibilities with variables, we use a fork to
describe a possible branch with respect to the range of the
variable. For example, Figure 8(a) shows the case of a
responsibility “dialAY”, where callee Y is a variable.
Assume that the range of Y includes B and C. Thus, two
subsequent scenarios are possible, where 4 calls B or 4
calls C. Therefore, “dialAY” is expanded into two (static)
responsibilities “dial AB” and “dialAC”.

As mentioned before, the dynamic stub can have multiple
submaps to be plugged into. The selection of the submaps
is determined at run time by a selection policy that is
usually specified in the pre-conditions of the submaps. The
dynamic stub can be also expanded into a branch of the
static stubs (denoted by solid diamonds). Let us examine
Figure 8(b). In the figure, two submaps def and f can be
plugged into the dynamic stub, thus allowing two possible
scenarios. Therefore, we expand the scenario into two using
a branch with guards (taken from the pre-conditions of the
submaps). Thus, for each scenario, we place a static stub in
which submap f or def is plugged. In addition, for the
submaps that have post-conditions modifying conditions in
a scenario, merging some expanded scenarios might be
necessary. For this situation, we use a join.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 593

The root map in which all dynamic elements are eliminated
is called an expanded root map.

root,

Figure 9. Heuristic HI

6.4 Deriving FI-prone Scenarios

After eliminating the dynamic elements on the root map,
here we derive Fl-prone scenarios in the suspected root
map. Among all scenario paths in the expanded root map, a
feature is activated in a path passing through a static stub
with the feature submap. According to Observations 1 and
2 in Section 6.1, we propose the following heuristics H1
and H2 for deriving Fl-prone scenario paths from the
expanded root map.

Definition 6.1 Let fand g be feature submaps of features F
and G, respectively. Then, derive any scenarios on the
expanded root map based on the followings:

Heuristic H1: Derive a scenario path that passes through
both fand g.

Heuristic H2: Derive a scenario path in which f'is
bypassed by g, and vice versa.

Figure 9 illustrates Heuristic H1, which derives an FI-prone
scenario between CNDB, and TCSg. The scenario activates
CNDB and TCS sequentially as explained in Figure 7 (I).

On the other hand, Figure 10 describes Heuristic H2, where
a function of RC is bypassed by CFB. In the scenario, an FI
between CFB, and RCp occurs as explained in Figure 7
(I1). Note in the figure that the root map rootc is expanded
into two cases (a) C dials 4 or (b) C dials B. The dotted line
shows a scenario; after C dials 4, the call is forwarded to B,
but rcB, is bypassed.

Here we should note that the derived scenarios do not
guarantee the existence of actual FIs. That is, Heunistics H1
and H2 derive only Fl-prone scenarios. Hence, not all
derived scenarios contain Fls, and some of these scenarios
might even be Fi-free. The exact Fls will be detected in the
FI detection process, which is the next step of FI filtering.
The goal of the proposed method is to provide the FI-prone
scenarios as essential information for efficient FI detection.

Figure 10. Heuristic H2

7. Evaluation
7.1 Preliminary

We have applied the proposed method to the specifications
of the eight features taken from the second FI detection
contest [21]. The features include: (1) Call Forwarding on
Busy (CFB), (2) Teen Line (TL), (3) Terminating Call
Screening (TCS), (4) Reverse Charge (RC), (5) Call
Number Delivery Blocking (CNDB), (6) Ring Back when
Free (RBF), (7) Voice Mail (VM), and (8) Split Billing
(SB).

Since the contest specifications are given by
Communicating Finite State Machines (CFSMs), we first
construct the UCMs (root map and default/feature
submaps), so that the causal relationships among events are
preserved. The UCMs consist of a root map and default
submaps as shown in Figure 1, and feature submaps as
shown in Figure 2.

We combined each pair among the eight features in the
following two ways: (A) both features are allocated to the
same user, and (B) two users subscribe to different features.
Next, for each combination, we applied the first phase of
the proposed FI filtering method. Finally, for combinations
with (c) Fl-prone, we applied the second phase to derive
FI-prone scenarios.

The evaluation is conducted from the following viewpoints
for both filtering phases:

Filtering quality: To check the quality of the proposed
filtering method, we evaluate the filtering quality that
can be defined by the number of feature combinations
filtered at the FI filtering process.

Scenario coverage: We evaluate the scenario coverage to
check whether the scenarios derived by proposed
filtering method cover actual FIs scenarios or not.

Reduction ratio: From the viewpoint of cost reduction, we
evaluate the reduction ratio, which represents the
percentage of the irrelevant scenarios filtered by the
filtering process.

594 | NECTEC Technical Journal Vo.5, No.16

Table 1. Filtering result in the first phase

CFB TL TCS RC CNDB RBF VM SB
same diff [same diff [same diff |same diff [same diff [same diff [same diff [same diff
@] O]l QO] mMJEO]@]@©]©] |] €] CB
[T ® @[®][© @] ©] @] €] €] ® |« TL
@@ b |lE@lou|lE@|| @] @]®E©] TCS
© 0| @@ @ |w©]@©@] @]]| RC
@[@] © |] ®]] CNDB
© | ©] €| ()])| RBF
©]l©|@©] VWM
(c) SB
Table 2. Filtering result in the second phase (scenario derivation)
CFB TL TCS RC CNDB RBF VM SB
same diff |same diff [same diff |same diff |same diff ([same diff ([same diff |same dQiff

[H1] () | (b) [Other] HI [HI [H2 | (b) | H1 | (@) | H1 |Other] H1 | HI | H2 | CFB
[[o | HI | (b | HI | HI | (b) | HI | HI | H2 | HI | (b) | HI TL
Other| HI | H1 | (b) | H1 |[Other| H1 | H2 | H1 | HI1 |Other| TCS
Other| (b) | HI | H1 [HLH2 Hl1 | H1 | (a) |[Other] RC
(o) | HI | H1 | H1 | H1 | (b) | HI | CNDB
H1 H1 H1 H1 H1H RBF
H1 Hi H1 VM
Other SB

As a reference of the actual FIs among the eight services,
we used FI detection results submitted by the team of
Ottawa University [26].

To justify the effectiveness of the proposed filtering, we
should compare the proposed method with other filtering
methods. However, although several FI filtering method
have been proposed [14, 18, 20], none of them conducts
quality evaluation for practical settings. Therefore, carrying
out comparative evaluation on filtering quality is
impossible.

7.2 Filtering Quality

We want to see how many service combinations can be
filtered by the proposed method. In other words, we
examine how many combinations have a definite answer;
(a) FI occurs or (b) FI never occurs. We define a metric
filtering quality as; (# of combinations with verdicts (a) or
(b)) / (total # of combinations).

Table 1 shows the filtering result obtained by the first phase
only. Table 2 shows the filtering result with both first and
second phases.

Each entry of the tables represent one of the verdicts: (a) FI
occurs, (b) FI never occurs or (¢) Fl-prone. The same (or
diff) represents two services allocated to the same users (or
different users, respectively), as mentioned in Section 7.1.
The shaded entries represent the combinations that cause
actual FIs detected in [26].

Table 1 shows that all combinations causing FIs are
covered by the verdicts (a) or (c). For example, the
combination of TCSz and CNDB, (in subsections 2.2 and
5.3) has the verdict of (c) Fi-prone in the entry diff of
CNDB&TCS. Note that most combinations have the
verdict (c), and no concrete scenario is available at this
time. The number of combinations that have a definite
answer, i.e., (a) or (b), is 14, and 50 Fl-prone combinations
still have to be examined at the subsequent FI detection
process. Therefore the filtering quality of the first phase of
the proposed method is 22.9% (=14/64).

On the other hand, in Table 2, for the combinations with
(c), concrete Fl-prone scenarios are derived by Heuristics
H1 and/or H2. Hl(and H2) in the table represents the
combination with a scenario derived by Heuristic H1 (and
H2, respectively) 7. Other means that no scenario has been
derived by neither HI nor H2.

The table shows that scenarios in Other do not cause actual
FIs. Therefore, if we conclude that the combinations with
Other to be Fl-free, then more combinations can be filtered
at the filtering process. Since the number of combinations
with (a), (b) or Other is 22, the filtering quality is improved
to 34.4% (=22/64) with the information of concrete FI-
prone scenarios.

7 . . .
Sometimes, however multiple scenarios are derived from a combination.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 595

7.3 Scenario Coverage

Next, we conduct a scenario-wise investigation to check
whether the derived scenarios surely cover actual Fls or
not. Here we define a metric scenario coverage as follows.
Let n, be the number of actual FI scenarios contained in the
derived scenarios, and let #, be the total number of actual FI
scenarios. Then, the scenario coverage is defined by n,/n,.

Table 3 shows the number of scenarios derived from FI-
prone combinations that were represented by (c) in Table 1.
Among the total 74 scenarios investigated, 48 scenarios
were derived by Heuristic H1, while 6 scenarios were
derived by Heuristic H2. 20 scenarios matched neither H1
nor H2. Out of the 25 scenarios containing actual FI
identified in [26] (thus, n, = 25), 20 were from the scenarios
derived by HI, and the remaining 5 scenarios were from
the scenarios derived by H2.

For example, as mentioned in subsection 6, FI-(b) TCS,
and CNDB,, was derived by H1, while FI-(c) RC; and CFB,
was derived by H2.

From this result, it can be seen that all FI scenarios are
contained in the Fl-prone scenarios derived by Heuristics
H1 and H2. None of the FI scenarios belong to the set
Other. In this experiment, the proposed method achieves
100% coverage (thus, ny; = 20 + 5 = 25 and n,= 25). Hence,
it can be said that Heuristics 1 and 2 sufficiently cover
actual FI scenarios in the experiment.

7.4 Reduction Ratio

The proposed method (phase 2) derives only Fl-prone
scenarios. In other words. it excludes (or filters) many
scenarios that are irrelevant to the FI analysis, which
significantly reduces the cost of scenario analysis. Our
interest here is to evaluate how many such irrelevant
scenarios can be filtered by the proposed method. We
define a metric reduction ratio as follows: Let m, be the
number of the derived scenarios, and let m, be the total
number of existing scenarios in all combinations. Then, the
number of the irrelevant scenarios is m, - m,; Thus, the
reduction ratio is defined by (m,- m,)/m,.

As shown in Table 3, 48 scenarios were derived by
Heuristic H1 and 6 scenarios were derived by Heuristic H2.
Then, the total number of the scenarios that were derived
by Heuristic H1 and H2 were 54 (m,; =48 + 6 = 54). On the
other hand, the number of all scenarios existing in all
combinations of the feature are 715 (m, = 715). Thus, the
percentage of the scenario reduction is 92.44% ((m,- m,)/m,
=715 - 54/715).

This means that, instead of applying the FI-detection to all
existing 715 scenarios, we can remove more than 90% of
them and apply the Fl-detection to only 54 scenarios that
were derived by Heuristic H1 and H2. In other words, we
can also say that in this case study; the proposed method
could efficiently reduce more than 90% of the cost for FI-

detection which is the next process after Fl-filtering.

Since the proposed filtering is a low-cost method, which is
performed just by visually investigating whether or not the
scenario satisfies two heuristics. Hence, it can be said that
overall, the proposed method is expected to reduce
considerable cost for F1 detection process with a small
amount of cost.

Table 3. Table of the result of scenario coverage

The number of The number of

Filtering Method scenarios derived from | scenario containing
Fl-prone combinations actual FI
Derived by H1 48 20
Derived by H2 6 5
Derived by neither
Hlnor H2 20 0
Total 74 25

8. Conclusion

In this paper, we have proposed a two-phase FI filtering
method based on UCMs. In the first phase, using the stub
plug-in concept of UCMs, we characterize each feature in
terms of its stub configuration. The stub configuration
represented by the SC-matrix introduced a notational
convention that is useful for representing features with
UCMs. The different stub configurations are composed by
means of a matrix combination. Basically, the matrix
combination is performed by checking only the pre-
conditions of the feature submaps, which are independent
of the detail of the submaps. Thus, the proposed method is
easy to use and scalable.

In the second phase, we have proposed a method to derive
the Fl-prone scenarios. Based on the two heuristics, the
second phase derives FI-prone scenarios from root maps of
Fl-prone combinations.

The experimental evaluation through the FI detection
contest showed that the derived scenarios successfully
covered all scenarios of the actual FIs. Also, the
combination did not cause actual FIs when there is no FI-
prone scenario derived by the heuristics from a FI-prone
combination. This fact implies that the heuristics are quite
reasonable and they can improve filtering quality.
Furthermore, the experimental evaluation showed that the
proposed method could effectively filter 90% of the
irrelevant scenarios, which implies a significant cost
reduction of the scenario investigation.

Our future work is summarized as follows. We are
currently investigating an efficient framework to use the
derived FI-prone scenarios in the FI detection process (e.g.,
test case generation, etc). Also, we plan to apply the
proposed method to more services and features, which may
reveal more effective heuristics for FI filtering.

596 | NECTEC Technical Journal Vo5, No.16

Acknowledgments

This research was supported partly by a Grant-in-Aid for
ISPS Fellow (No.100987) from the Ministry of Education
Japan.

References

[1] A. Aho, S. Gallangher, N. Griffeth, C. Schell and D.
Swayne, “SCF3™/Sculptor with Chisel: Requirements
Engineering for Communications Services”, Proc. of
Fifth Int'l. Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’98),
pp-45-63, Oct. 1998.

{21 D. Amyot, L. Logrippo, R.J.A. Buhr and T. Gray, “Use
Case Maps for the capture and validation of distributed
systems requirements”, Proc. of Fourth Int'l
Symposium on Requirements Engineering (RE’99),
pp-44-53, June 1999.

[3] R. Boumezbeur, L. Logrippo, “Specifying Telephone
Systems in LOTOS”, [EEE Communications
Magazine, Vol. 31, No. 8§, pp.38-45, August 1993.

[4] RJ.A. Buhr, “Use Case Maps as architectural entities
for complex systems”, IEEE Transactions on Software
Engineering, Vol.24, No.12, pp.1131-1155, 1998.

[5] E.J. Cameron, and H. Veithuijsen, “Feature interactions

n telecommunications systems”, IEEE
Communication Magazine, Vol.31, No.8, pp.18-23,
1993.

[6] E.J. Cameron, K. Cheng, F-J. Lin, H. Liu, and B.
Pinheiro, “A formal AIN service creation, feature
interactions analysis and management environment:
An industrial application”, Proc. of Fourth Int’l
Workshop on Feature Interactions in
Telecommunication Networks and Distributed Systems
(FIW*97), pp.342-346, June 1997.

[7] C. Capellmann, P. Combes, J. Pettersson, B.
Renard, and J.L. Ruiz, “Consistent interaction
detection -A comprehensive approach integrated with
service creation”, Proc. of Fourth Int’l. Workshop on
Feature Interactions in Telecommunication Networks
and Distributed Systems (FIW’97), pp.183-197, June
1997.

[8] A. Daniel, “Use Case Maps Navigator”,
http://www.usecasemaps.org/tools/ucmnav/index.shtm

[9] M. Faci, L. Logrippo, “Specifying Features and

Analyzing Their Interactions in a LOTOS
Environment”, Feature Interactions in
Telecommunications Systems, L. G. Bouma, H.

Velthuijsen (Eds.), IOS Press, pp.136-151, 1994.

[10] A. Gammelgaard and E.J. Kristensen, “Interaction
detection, a logical approach”, Proc. of Second Int’l.
Workshop on Feature Interactions in

Telecommunications Systems (FIW'94), pp-178-196,
1994.

[11TJA. Grinberg, “Seamless Networks: Interoperating
Wireless and Wireline Networks”, Addison-Wesley,
1996.

[12] R. J. Hall, “Feature Interactions in Electronic mail”,
Proc. of Sixth Int’l. Workshop on Feature Interactions
in Telecommunications and Software Systems
(FIW’00), pp.67-82, May 2000.

[13]Y. Harada, Y. Hirakawa, T. Takenaka and N.
Terashima, “A conflict detection support method for
telecommunication service descriptions”, [EICE
Trans. Comm., Vol.E75-B, No.10, pp.986-997,
October 1992.

[14] M. Heisel and J. Souquieres, “A heuristic approach to
detect feature interactions in requirements”, Proc. of
Fifth Int’l. Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’98),
pp-165-171, Oct. 1998.

[15]Y. Hirakawa and T. Takenaka, “Telecommunication
service description using state transition rules”, Proc.
of IEEE Int’l Workshop on Software Specification and
Design, pp.140-147, October 1991.

[16]Y. Kawarazaki and T. Ohta, “New Proposal for
Feature Interaction Detection and Elimination”, Proc.
of Third Int’l. Workshop on Feature Interactions in
Telecommunications Systems (FIW'95), pp.127-139,
Oct. 1995.

[17]D.O. Keck and P.J. Kuehn, “The feature interaction
problem in telecommunications systems: A survey”,
IEEE Trans. on Software Engineering, Vol.24, No.10,
pp-779-796, 1998.

[18]D.O. Keck, “A tool for the identification of interaction-
prone call scenarios”, Proc. of Fifth Int’l. Workshop
on Feature Interactions in Telecommunications and
Software Systems (FIW’98), pp.276-290, Oct. 1998.

[19]A. Khoumsi, “Detection and resolution of interactions
between services of telephone networks™, Proc. of
Fourth Int’l. Workshop on Feature Interactions in
Telecommunication Networks and Distributed Systems
(FIW’97), pp-78-92, June 1997.

[20] K. Kimbler, “Addressing the interaction problem at
the enterprise level”, Proc. of Fourth Int’l. Workshop
on Feature Interactions in Telecommunication
Networks and Distributed Systems (FIW’97), pp.13-
22, June 1997.

[21]M. Kolberg, E.H. Magill, D. Maples and S. Reiff,
“Second Feature Interaction Contest”, Proc. of Sixth
Int’l. Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’'00),
pp-293-310, May 2000.

Design and Evaluation of Feature Interaction Filtering with Use Case Maps | 597

[22]Y. Nagatake, H. Sakai, T. Nohara and K. Takami, “An
advanced IN control architecture for providing VolP
Supplementary Services”, Technical report of IEICE.
ISSE200042, pp.1-6, June 2000.

[23]M. Nakamura, Y. Kakuda, and T. Kikuno,
“Analyzing non-determinism in telecommunication

services using P-invariant of Petri-Net model”. Proc.
of IEEE INFO-COM'97, April 1997.

[24]M. Nakamura, Y. Kakuda and T. Kikuno, “Petri net
based detection method for non-deterministic feature
interactions and its experimental evaluation”, Proc. of
Fourth Int'l. Workshop on Feature Interactions in
Telecommunication Networks and Distributed Systems
(FIW’97), pp.138-152, June 1997.

{25] M. Nakamura, and T. Kikuno, “Exploiting symmetric
relation for efficient feature interaction detection”,
IEICE Trans. on Information and Systems, Vol E82-D,
No.10, pp.1352-1363, 1999.

[26]M. Nakamura, T. Ding, J. Sincennes, X. Lu and L.
Logrippo, “Second Feature Interaction Contest -
Contest Report”, Proc. of Sixth Int’l. Workshop on
Feature Interactions in Telecommunications and
Software Systems (FIW’00), pp.314-317, May 2000.

[27]T. Ohta and Y. Harada, “Classification, detection and
resolution of service interactions in telecommunication
services”, Proc. of Second Int’l. Workshop on Feature
Interactions in Telecommunications Systems (FIW’94),
pp.60-72, 1994,

[28]B. Renard, P. Combes, F. Olsen, “An SDL/MSC
Environment for Service Interaction Analysis™. ICIN,
Bordeaux, November 1996.

[291M., Weiss, “Feature Interactions in Web services”,
Proc. of Seventh Int’l. Workshop on Feature
Interactions in Telecommunications and Software
Systems (FIW’03), pp.149-156, June 2003.

[30]T. Yoneda and T. Ohta, “A formal approach for
definition and detection of feature interactions™. Proc.
of Fifth Int’l. Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’98).
pp-165-171, Oct. 1998.

[31]P. Zave, “Feature interactions and
specifications in telecommunications”,
Computer, Vol.26, No.8, pp.20-30, 1993.

[32]1Bellcore, “Advanced Intelligent Network (AIN)
Release 1, Switching Systems Generic Requirements”,
Bellcore Technical Advisory TA-NWT-O01123 (1991)

formal
{EEE

[33] Feature Interaction in Telecommunications, Vol. I-VII,
10S Press (1992-2003)

[34]W3C, “Web Services Activity”, 2004,
http://www.w3.0rg/2002/ws/

Pattara Leelaprute received the M.E.
degree in computer engineering from Osaka
University in 2003. He is currently studying
towards the Ph.D. degree in the Graduate
School of Information Science and
Technology at the same university. His
research interests include
telecommunication services and feature interaction problem
in network services. He is a member of the IEEE and a
member of the [EICE.

Masahide Nakamura received the B.E.,
M.E., and Ph.D. degrees in Information
and Computer Sciences from Osaka
University, Japan, in 1994, 1996, 1999,
respectively. From 1999 to 2000, he has
been a post-doctoral fellow in SITE at
University of Ottawa, Canada. He joined Cybermedia
Center at Osaka University from 2000 to 2002. He is
currently an assistant professor in the Graduate School of
Information Science at Nara Institute of Science and
Technology, Japan. His research interests include the
feature interaction problem in network services, service-
oriented architectures, and software metrics and security.
He is a member of the IEEE and a member of the IEICE.

Ken-ichi Matsumoto received the B.E.,
M.E. and Ph.D. degrees in Information and
Computer Sciences from Osaka University,
Japan, in 1985, 1987, 1990, respectively.
He is currently a professor in the Graduate
School of Information Science at Nara
Institute of Science and Technology, Japan.
His research interests include software measurement and
software user process. He is a senior member of the IEEE,
and a member of the ACM, IEICE and IPSJ.

Tohru Kikuno received M.S¢. and Ph.D.
degrees from Osaka University in 1972
and 1975, respectively. He joined
Hiroshima University from 1975 to 1987.
Since 1990, he has been a Professor of the
Department of Information and Computer
Sciences at Osaka University. Since 2002,
he has been a Professor of Graduate School of Information
Science and Technology at Osaka University. He also holds
a Director of Osaka University Nakanoshima Center from
2004. His research interests include the analysis and design
of fault-tolerant systems, the quantitative evaluation of
software development processes, and the design of
procedures for testing communication protocols. He is a
senior member of IEEE, a member of ACM, and a fellow
of IPSJ. He received the Paper Award from IEICE in 1993.

