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ABSTRACT - For reconstructing a complex object wavefront from digital holograms, we propose a
new penalized-likelihood approach based on the measurement statistics and edge-preserving
regularization. The log-likelihood is complicated since the measurements are related to the magnitude of
the complex beam. We use optimization transfer to derive a new simplified iterative algorithm that

monotonically decreases the cost function.

Unlike the conventional

FFT-based holographic

reconstruction method, the new approach uses all of the measured data, and can be applied to holograms
with any (known) reference beam pattern. Simulation results demonstrate the potential for improved

image quality.

1. INTRODUCTION

In digital holography, the interference between a reference
beam and a wavefront from an object of interest is recorded
by an electronic sensor such as a CCD array. Under
appropriate sampling conditions, one can reconstruct the
complex object wave from the digital hologram. The
classical computer reconstruction method for off-axis
holograms is to compute the 2D FFT of the measured
hologram, use a window to select the small portion of the
spectrum corresponding to the appropriate interference
term, shift that portion to DC, zero pad, and then take the
inverse 2D FFT. (The method is a 2D analog of
demodulation of AM audio signals.) This simple approach
is applicable only to plane wave reference beams, uses only
a small fraction of the measured data, yet can still suffer
from interference from the other terms, and accounts for
noise only implicitly by spectral apodization. The potential
use of digital holography for biological microscopy has
renewed interest in finding improved reconstruction
methods for digital holograms, e.g., [1].

We recently proposed a new numerical reconstruction
approach [2] formulated from first principles including the
physical optical model and a statistical model for
measurement noise. The problem is ill-posed, so we
perform penalized-likelihood estimation using edge-
preserving regularization. The log-likelihood is quite
complicated since the object wave is complex whereas the
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measurements are related to the magnitude of the sum of
the object beam and the reference beam. Using
optimization transfer techniques, we derived in [2] an
iterative algorithm that monotonically decreases the cost
function each iteration and thus typically converges to a
local minimizer. The computation per iteration is
comparable to the EM algorithm for image restoration. The
approach can be applied to holograms with any (known)
reference beam pattern, including the types of spherical
patterns seen in practice. Simulation results show that this
statistical approach has the potential to improve image
quality in digital holography relative to conventional
reconstruction methods. In this paper, we derive a simpler
iterative algorithm for this problem.

2. THEORY

As described in detail in [2], the problem of image
reconstruction in digital holography can be posed as the
following penalized-likelihood estimation problem:

x = argmin ¥ (x) (1)

ock

W(x) = L(x)+ R(x)

where x = (x,, ..., xp) denotes the vector of unknown pixel
values in the object to be recovered, L(x) denotes the
negative log-likelihood, and R(x) denotes a roughness
penalty function. We assume a Poisson statistical model for
the measurements:
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y; ~ Poisson{y (x)}, i=1,.,N (2

7,(x) =[[Ax], +u| +r, 3)

where 4 € C¥"M denotes the system matrix that models the
imaging system, u; € C denotes the ith sample of reference
beam, r; € [0,0) denotes the additive effect of detector dark
current and possible gaussian readout noise [3], y; € R
denotes the ith element of the hologram measurement (e.g.,
recorded by a CCD detector) and

M
[4x], = a,x )
j=1

We assume that A, {;}, {r.}, {:} are all known, and the
goal is to determine the image pixel values x. For
independent measurements, the corresponding negative
log-likelihood is

L(x) = ihl([Ax]l +ui)
h(z) = ﬂz’z + r,,)—y,. log(lz‘2 + r,.) )

The minimization problem (1) is challenging because x is
complex and A,(-) is non-quadratic. One can show that the
(column) gradient of L(x) is

VL(x) = A'diag 2[ —_—y(—)] (Ax+u) (6)

where denotes Hermitian transpose. One could attempt

to find the minimizer X by applying a gradient descent
algorithm of the form

x = x" VP (x™) )

However, the conventional “trial and error” approach to
choosing the step size a is inconvenient; in general this
approach is not guaranteed to monotonically decrease the
cost function so divergence is possible. The dominant
computation for each iteration of any such algorithm is the
gradient (6); this requires one multiplication by 4 and by
A’. This is comparable to the EM algorithm for image
restoration.

In [2], we proposed to apply the optimization transfer
principle to solve this minimization problem [4]. For each
iteration n, we find a surrogate function ¢™ that satisfies
the two conditions:

¢(n)(x(n)) — \P(x(n))
¢ (x) 2 W(x)

These majorization conditions ensure that the optimization
transfer algorithm

(n+1)

x" = argmin g™ (x)

xeC

will monotonically decrease the cost function, i.e.,
\P(x(n+]) ) < \I](x(n) )

Since the cost function is nonconvex, such monotonic

methods typically will converge to a local minimizer near

the initial guess x“.

In this paper, we describe an alternative approach that may
be somewhat simpler. Given a current guess x, let the
(negative) gradient define a search direction

d =-V¥(x)
and consider the 1D “line search” minimization problem
a'™ =argmin f(a)
f(la)= ‘;(x+ ad)

We propose to apply the principles of optimization transfer
to this 1D minimization problem. (An algorithm for a
simpler problem that employed a similar 1D search strategy
was described in [5].) Note that

f@)=3 g.(@)+R(x+ad)

where

A

g.(@)=h,([A(x+ad)}, +u,)

and

* .
g;(a)=2real| [Ad]; 1——_—))'— ([A(x +ad)]; + ui)

yi(x+od)

where ”*” denotes conjugate. The key idea here is that the

functions g{-) have bounded curvature, so it is possible to
find quadratic surrogate functions of the form

. , I n2
gj(a;a)=gi(a)+g;(aNa—-a)+ 56 (@Na-a")" (8)
where the curvatures Ei are chosen such that

9,(x;a') 2 g(a) ©
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The condition g(a';a") = g(a') is satisfied by construction.
Similarly one can find a quadratic surrogate function for

R(x + ad), call it gy(o;a’); with curvature c'o(a') [6, 71

Then we have the overall quadratic surrogate for flo)
constructed as follows:

g(a;a’) = Zq,- (a;a')

We can minimize this surrogate analytically, leading the
following “sub-iteration” for finding the minimizing value
of a:

. old , _ old
il qa”™;

)
old )

ew . o
amw :argmlnq(a;aold) =ao .
a g(a”;a

old __ f(aOId)
N
Zi:()ci a

Being based on the optimization transfer principle, this

(10)

old )

subiteration is guaranteed to decrease f{-) monotonically.

We initialize it with a® = 0, which then ensures that when

the resulting o"*" (after one or more sub-iterations) is used
within the overall iteration (7), the overall algorithm is
monotonic.

3. CURVATURES

It remains to find curvatures for (8) that ensure the
majorization condition (9). Using (5) and (4), we have that

gi{t)=m{1) - y; log m(1)
where

mi(t)i‘[A(x +1td)], + ull2 +r = ll,. + tp,.\2 +r,
=1%|p,|" +2¢ real(l] p,) +|I,| +7,
1,21 Ax], +u,, p, <[ Ad],
For brevity we also write

m(t)=wt’+2bt+v,
m, (1) =2(wt+b,)

A A A
where w,=| p, |*, b,=real(I, p,) ,and v, =r,+|[, 1.
The derivatives of g; are:

. N AN
g,-(t)—{l m(t)]m,-(t)

N P/
gi(t)—{l m ()

Yi .2

}'1’1,. O+

It is shown in [2] that the following expression is a suitable
choice for the curvature that will ensure majorization:

El(s) = argmax5i(t;s) , 51(I;S)igi(t)—g’ (s)

12y t )

provided the maximum 1s positive and finite. Considering
the particular form of m{¢) in this problem, we can solve
for ¢; (s) analytically.

Hereafter we drop the subscript “i” for simplicity. Because
r(r) is linear in ¢, one can show that

Yy m(ym(s) —m(s)rm(t)

o(t;s)=2w+
m(s) (t—s)m(r)
Elementary simplifications lead to
t)n - n(t
m(t)m(s) = m(s)r(t) =2[wb(t+s)+ wzst + 2b2 - wy]

(t=s)m(t)

Extrema of &- ; s) occur at the zeros of its derivative with
respect to ¢, i.e., where

0 = 9 m@Oym(s) = m(s)m()
ot (t—s)m(t)

or equivalently

m(t)[wb + wzs] =[wb(t + 5) + wzst + 2b2 —wv]m(t)
0=w(wb+ wzs)t2 + 2w(wbs + 2b2 — W)t
+2b2% (ws + 2b) = vw(ws + 3b)

This is a quadratic formula in ¢, so one can easily find its
roots. One can then check the values of & at each root.

Since m; is a quadratic function of 7, the curvature g;(f)isa

rational function of ¢, and one can show that it is bounded.
So the root corresponding to the larger (necessarily finite)

value of 8 will be an appropriate choice for ¢; . Typically,

these polynomial manipulations require much less
computation than computing the cost function gradient (6).

4. SIMULATION RESULTS

Fig. la shows a simulated 1D hologram generated
according to the model (2) for the case where A
corresponds to convolution with a 3-point moving average
filter, for the complex signal shown in Fig. 1b.

Fig. 2a shows the conventional reconstruction obtained by
windowing one of the sidelobes of the spectrum of the
recorded hologram. This estimate is noisy and has ringing.

Fig. 2b shows the proposed penalized-likelihood estimate
% using edge-preserving regularization. The NRMS error
of this approach is about 7%, compared to 14% for the
conventional approach.
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Fig. 3 shows the conventional and proposed penalized-
likelihood reconstruction for a 2D complex object using the
same setup as in {2]. The NRMS error is about 14% for the

proposed approach and 40% for the conventional approach.
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Fig. 1. Simulated 1D hologram data and true object.
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Fig. 3. Simulation and reconstruction of 2D complex object

5. DISCUSSION

We have described an algorithm for penalized-likelihood
reconstruction in for digital holography that is an
alternative to the method described in [2]. As in [2], this
approach -can improve the quality of the image relative to
the conventional FFT-based holographic reconstruction
technique. Moreover, unlike the conventional approach, our
statistical reconstruction is not limited by the assumption of
a planar reference beam.
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