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Abstract-Computation intensive DSP applications usually require parallel/pipelined processors in order to meet specific

timing requirements. Data hazards are a major obstacle against the high performance of pipelined systems. This paper

presents a novel efficient loop scheduling algorithm that reduces data hazards for such DSP applications. This algorithm

has been embedded in a tool, called SHARP, which schedules a pipelined data flow graph to multiple pipelined units

while hiding the underlying data hazards and minimizing the execution time. This paper reports significant improvement

for some well-known benchmarks showing the efficiency of the scheduling algorithm and the flexibility of the simulation

tool.
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1 Introduction

In order to speedup current high performance DSP sys-
tems, multiple pipelining is an important strategy that
should be explored. Nonetheless, it is well-known that one

of the major problems in applying the pipclining technique
is the delay caused by dependencies between instructions,

called hazards. Control hazards are known as the hazards

that prevent the next instruction in the instruction stream

from being executed, such as branch operations. Like-

wise, the hazards that encumber the next instruction by data

dependencies are called data hazards. Most computation-
intensive scientific applications, such as image processing,

and digital signal processing, contain a great number of

data hazards and few or no control hazards. In this paper,
we present a tool, called SHARP (Scheduling with Hazard

Reduction for multiple Pipeline architecture), which was

developed to obtain a short schedule while minimizing the
underlying data hazards by exploring loop pipelining and

different multiple pipeline architectures.

Many computer vendors utilize a forwarding technique

.Reprint with pennission from Kluwer Academic Publishers in the jo

design and implementation ofDSP systems, Vol 18. 1998,1'1' 111-123

to reduce the number of data hazards in their architectures.

This process is implemented in hardware whereby a copy

of the computed result is sent back to the input prefetch

butTer of the processor. However, the larger the number
of forwarding butTers, the higher the cost that will be im-

posed on the hardware. Therefore, there exists a trade-
otT between its implementation cost and the performance

gain. Furthermore, many modem high speed computers,

such as MIPS R8000, IBM Power2 RS/6000 and others,

use multiple pipelined functional units (multi-pipelined) or
superscalar (super)pipelined architectures. Providing a tool
that determines an appropriate pipelined architecture for a

given specific application, therefore, will be beneficial to

computer architects. By using such a tool, one can find
a suitable pipeline architecture that balances the hardware
and performance costs by varying the system architecture

(e.g., a number of pipeline units, type of each unit, for-

warding butTers, etc.).

Rearranging the execution sequence of tasks that be-

long to the computational application can reduce data haz-

ards and improve the performance. Dynamic scheduling

,umal of VLSI signa! processing, special issue on nlture directions in the
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algorithms such as tomasulo and scoreboard are examples
of implementing the algorithms in hardware. They were

introduced to minimize the underlying data hazards which

can not be resolved by a compiler [16]. These techniques,

however, increase the hardware complexity and costs.

Therefore, special consideration should be given to static

scheduling, especially for some computation-intensive ap-

plications. The fundamental perfonnance measurement of
a static scheduling algorithm is the total completion time

in each iteration, also known as the schedule length. A

good algorithm must be able to maximize parallelism be-
tween tasks and minimize the total completion time. Many
heuristics have been proposed to deal with this problem,

such as ASAP scheduling, ALAP scheduling, critical path

scheduling and list scheduling algorithms [2,3]. The crit-

i.~ path, list scheduling and graph decomposition heuris-
tics have been developed for scheduling acyclic dataflow

graphs (DFGs) [7,14]. These methods, however, do not
consider the parallelism and pipelining across iterations.

Some studies propose scheduling algorithms to deal with

cyclic graphs [5, 15]. Nevertheless, these techniques do not
address the issue of scheduling on pipelined machines that

exploit the use of forwarding techniques.

Considerable research has been done in the area of

loop scheduling based on software pipelining-a fine-grain

loop scheduling optimization method [6, 10, 12). This ap-
proach applies the unrolling technique which expands the

target code segment. The problem size, however, also
increases proportionally to the unrolling factor. Iterative

modulo scheduling is another framework that has been im-

plemented in some compilers [13]. Nonetheless, in order

to find an optimized schedule, this approach begins with an

infeasible initial schedule and has to reschedule every node
in the graph at each iteration.

The target DSP applications usually contain iterative or

recursive code segments. Such segments are represented in

our new model, called a pipeline data-jlow graph (PDG).

An example of a PDG is shown in Figure l(b). In this

model, nodes represent tasks that will be issued to a cer-
tain type of pipeline and edges represent data dependen-

cies between two nodes. A weight on each edge refers to a

minimum hazard cost or pipeline cost. This cost represents

a required number of clock cycles that must occur in or-

der to schedule successive nodes. In this work, a proposed
novel pipeline scheduling algorithm, SHARP, takes a PDG
and some pipeline architecture specifications (c.g., pipeline

depth, number of forwarding buffers, type and number of
pipeline units etc.) as inputs. Thc algorithm then efficiently

schedules nodes from the PDG to the target system.

After the initial schedule is I'.omputcd, by a DAG
scheduling algorithm such as list scheduling, the algorithm
implicitly uses rctiming. Only a smull number of nodes arc
rescheduled in I:ach iteration of our algorithm. The new

scheduling position is obtained by considering data de-

pendencies and loop carried dependencies, i.e., using loop

pipelining strategy as a basis to reduce data hazards while
improving the total execution time under the hardware con-
straints given by the user specifications.

As an example, Figure I (a) presents two pipeline archi-

tectures each of which consists of five stages: instruction
fetch (IF), instruction decode (ill), execution (EX), mem-

ory access (M) and write-back (WR). For simplicity, as-
sume that each of these stages takes one clock cycle to fin-
ish [4]. The pipeline hazard in this case is 3, since with

this architecture, any instruction will put data available to
read in the first half of the 5th stage (WR) and read it in

the 2nd stage (ill). In Section 2, we will explain how to

calculate this cost in more detail. The PDG and its corre-

sponding code segment to be executed in this two-pipeline
system are shown in Figures I (b) and (c) respectively. No-
tice that each node of the graph also indicates the type of

instruction required to be executed. Assume that the WR
and ill stages of two dependent instructions can be over-

lapped. For example, instruction B can start reading (at the

ill stage) data produced by instruction A at the WR stage.
A legal execution pattern of the pipeline for this example

is illustrated in Figure 2(a).

Since all the pipeline stages of issued instructions

are consecutive, only the beginning of each instruction

pipeline is required to be shown. Figure 2(b) illustrates a

schedule table resulting from Figure 2(b). This table only

shows one iteration of the sample code segment (the com-

plete table comprises of M -3 identical copies of this ta-

ble). Such a schedule becomes an initial schedule which
can be optimized by SHARP. Figure 3(a) and 3(b) show
the resulting intermediate PDG and schedule after apply-

ing SHARP to the initial schedule. Nodes A and E from
the next iteration are rescheduled to current iteration of the

schedule. This is equivalent to retiming these nodes in the

PDG (see Figure 3(a». This technique explores the paral-

lelism across iterations (loop pipelining). SHARP repeat-

edly applies such a method to each intermediate schedule.
Figures 3(c) and 3(d) show the third intermediate retimed
PDG and its schedule respectively. At the third iteration
we obtain the optimized schedule with length 6 (a 25% im-

provement over the initial schedule).

Using our tool, we obtain not only the reduced sched-
ule length but we can also evaluate other architecture op-

tions. such as introducing forwarding hardware in the ar-
chitecture or even additional pipelines. In order to present

our algorithm, the remainder of this work is organized as

follows: Section 2 introduces some fundamental concepts.
The main idea and theorems behind the algorithm used in
SHARP are presented in Section 3. In Section 4, we dis-

cuss the experimental results obtained by applying differ-
ent pipeline architectures to this tool. Finally, Section 5
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draws conclusions of this work.

2 Background
A cyclic DFG, G = (V,E), is commonly used to repre-

sent dependencies between instructions in an iterative or

a recursive loop. However, it does not reflect the type of

pipeline architecture to which the code segment is sub-

jected. Therefore, in order to distinguish them, some com-
mon hardware factors need to be considered.

The type of architecture may be characterized by con-

sidering different types of pipelines in the system. The

number of stages in a pipeline, or pipeline depth, is one

configuration factor that is necessary to be taken into ac-
count, since it affects the overall pipeline speedup. The

forwarding hardware is also a factor because it can dimin-
ish the data hazards. Furthermore, the system may con-
sist of a number of forwarding buffers, responsible for how

many times a pipeline is able to bypass a datum [9].

In this paper, we assume our algorithm guarantees that

no delays occur during the execution of one instruction. In

other words, the number of cycles from the execution of the

first to the last pipeline stage for one instruction is equal to

the pipeline depth. In a multi-pipelined machine, if the ex-

ecution of an instruction /z depends on the data generated

by instruction 1\, and the starting moment of II and /z are

tl and /2 respectively, we know that t2 -t] ~ SOUl -Sin + I,

where SOUl is the index of the pipeline stage from which the

data is visible to the instruction /Z, and Sin is the index of

pipeline stage that needs the result of I. in order to execute

/z. We call SOUl -Sin + I the pipeline cost of the edge con-

necting the two nodes, representing instructions I. and h.
Figure 4 illustrates the concept of the pipeline cost. Such a

cost can be qualified in three possible situations depending

on the characteristics of the architecture:

case 1: The pipeline architecture does not have a for-

warding option. The pipeline cost is similar to the
data hazard, which may be calculated from the dif-

ference between the pipeline depth and the number
of the overlapped pipeline stages. For example in

Figure 4(a), this pipeline reads data at the end oflD

and the data is ready after WR. The SOUl stage is 7

and Sin is 3. Hence, for this case, the pipeline cost is

7-3+1=5.

case 2: Thc pipeline architecture has an internal forward-

ing, i.c., data can merely bc bypassed inside the same

functional unit. The pipeline cost from this case may

be obtained in a similar way as above. For instance,
the pipeline in Figure 4(b) has the internal forward-

ing such that the data will bc available right after the

EX stage. Then, S(III! is stagc 5 and Sin is stage 3,

so the pipeline cost is 5 -3 + 1 = 3. In this case,

the special folWarding hardware is characterized into

two sub-cases.

1. The folWarding hardware has a limited number

of feedback buffers. The pipeline cost will be

the value without folWarding when all the for-

warding buffers are utilized.

2. The folWarding hardware has an unlimited

number of feedback buffers (bounded by the

pipeline depth). In this case, the pipeline cost
will always be the same.

case 3.. The pipeline architecture has an external or cross

folWarding hardware, such as it is capable ofpassing
data from one pipeline to another pipeline. We cal-

culate the pipeline cost by the same way described

above. Again, limited number of buffers or unlim-

ited number of buffers are possible sub-cases.

2.1 Graph Model

In order to model the configuration of each multi-pipelined

machine associated with the problem being scheduled, the

pipeline data-flow graph is introduced.

Definition 2.1 A pipeline data-ftow graph (PDG) G =

(V,E,T,d,c) is an edge-weighted directed graph, where
V is the set of nodes, E E V x V is the set of depen-

dence edges, T is the pipeline type associated with a node

u E V, d is the number of delays between two nodes, and
c(e) = (cfo,cno) is afunctionfrom E to the positive integers

representing the pipeline cost, associated with edge e E E,
where cfo and Cno are the cost when considering with and

without forwarding capability respectively.

Each node in a PDG represents an instruction, and the

type of pipeline in which the instruction will be executed.
An edge from node u to node v, exhibited by the notation
u -t v, conveys that the instruction v depends on the result

from the instruction u. The number of delays d(e) on any
edge e E E such that u precedes v, where u, v E V, indicates

a data dependence from node u to v, such that the execu-

tion of node v at iteration j relies on the data produced by

node u at iteration j -d(e). The tuple associated with each
.(cJi"c",)"edge In a PDG, u --+ v, IS architecture-dependent where

cfo is the number of clock cycles required when there ex-

ists a [Qrwarding hardware, and C"" is the number of clock
cycles needed when executing the two instructions u and v

considering nQ forwarding. If there is no folWarding hard-
ware, the value of cfiJ will be the same as cno.

As an example, Figure 5(a) illustrates a simple PDG
associated with two types of functional units, adder and

multiplier. Each of which is a five-stage pipeline architec-

ture with a folWarding function. Therefore, the pipeline
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cost cfo = I and Cno = 3. Nodes A,B,C,D, and F represent

the addition instructions and node E indicates the multi-

plication instruction. The bar lines on D -+ A and F -+ E
represent the number of delays between the nodes, i.e., two

delays on D -+ A conveys that the execution of operation
D at some iteration j produces the data required by A at

iteration j + 2.

2.2 Initial Scheduling in SHARP

In this subsection, we introduce some important consid-

erations in acquiring a static pipeline schedule from the
POGo Considerable research has been conducted in seek-
ing a scheduling solution for a OFG [8]. In this research,

we tailor the list scheduling heuristic so that it agrees with

conditions of the POGo

A static schedule consists of multiple entries in a ta-
ble. Each row entry indicates one clock cycle-the syn-

chronization time interval, also called control step. Each
column entry represents one of the pipeline units in the

multi-pipelined system where nodes that have the same

corrcsponding types of pipeline will be assigned. Thc
first pipeline stage of each scheduled node starts executing

whenever the node appears in the table.

In order to obtain a static schedule from a PDG feed-
back edges (i.e., edges that contain delays) are temporar-

ily ignored in this initial scheduling phasc. For instance,
D -+ ,of and F -+ E in Figure 5(a) are temporarily ignored.

Our scheduling guarantees the resulting initial schedule is

Icgal by satisfying the following properties. Further, the

cs 

~ m~x{cs(m;) +cost(b;)},

cost(bj) = cfo ifb; > 0

cost(b;) = Cno otherwise2. 

If there is no direct-dependent edge between nodes
q and r, i.e. d(e) f O. and q is scheduled to control
step k, node r may be placed at any unoccupied con-
trol step which does not conflict with any other data
dependency constraints.

following scheduling properties must be preserved by any

scheduling algorithm.

Property 2.1 Scheduling properties for intra-iteration de-

pendencies

J. For any node n preceded by nodes m; by edges e;

(c/o.COO)such that d(e;) = 0 and m; ~ I n. lfcs(m;) is the

control step to which m; was scheduled and b; is the
number of available buffers for the functional unit

required by m;, then node n can be scheduled at any
control step (cs) that satisfies the following roles.

where

Note that if the architecture does not use forwarding hard-
ware, then we set cIa = Cno and b; = O. As an exam-

ple, Figure 5(b) presents the resulting schedule table when
we schedule the graph shown in Figure 5(a) to a multiple

pipelined system consisting of one adder and one multi-
plier with one internal buffer for each unit.

The last step of initial scheduling is to check the inter-
iteration dependency which is implicitly represented by the
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feedback edges of the PDG. A certain amount of empty
control steps has to be preserved at the end of the sched-
ule table if the number of control steps between two inter-
dependent nodes belonging to different iterations is not suf-
ficient to satisfy the required pipeline cost of the two corre-
sponding instructions. Figures 5(c) and (d) illustrates this
situation. Assume that the pipeline depth of the adder is
5. If we did not consider the feedback edge, the sched-
ule length would be only 4. However, the schedule length
actually has to be 6 since node A in the next iteration, rep-
resented by A2, cannot be assigned to the control step right
after node B I due to the inter-iteration dependency between
nodes A and B. Hence two empty control steps need to
be insert::d at the end of this initial schedule and the final
schedule length becomes six rather than four.

Note again that the execution of all pipeline stages, ex-
cept for the first one, of any scheduled node are hidden in
an initial schedule table. Those stages are overlapped and
only the first stage of each node is displayed, e.g., see Fig-
ure 2(a). After applying a list scheduling algorithm that
enforces Property 2.1 to the example in Figure I, the initial
schedule of Figure 2(b) is produced. The static schedule
length for that case is 8.

3 Reducing Schedule Length

In the previous section, we discussed the scheduling con-
ditions for assigning nodes from a PDG to a schedule ta-
ble. These conditions are also applied to the optimization
process of our algorithm. Our algorithm is able to reduce
the underlying static schedule length of an initial schedule
previously obtained. It explores the parallelism across iter-
ations by implicitly employing the retiming technique [II].
The following section briefly reviews the retiming and ro-
tation techniques.

3.1 Retiming and Rotation

The retiming technique is a commonly used tool for opti-

mizing synchronous systems. A retiming r is a function
from V to Z. The value of this function, when applied to

a node v, is the number of delays taken from all incom-
ing edges of v and moved to its outgoing edges. An illegal
retiming function occurs when one of the retimed edge de-

lays becomes negative. This situation implics a reference
to a non-available data from a future iteration. Therefore, if
we consider Gr = (V,E, T,dr,c) to bc a PDG G retimed by

a function r, a retiming is legal if the retimcd delay count

dr is nonnegative for every edge in E. For an edge u -t v,

the number of additional delays is equal to the number of

delays moved to thc cdgc through nodc II, subtracted by thc
number of delavs drawn out from thc cdgc through nodc v.

The retiming technique can be summarized by the follow-

ing properties:

Property3.l Let Gr = (V,E,T,dr,c) be a PDG G =
(V,E,T,d,c) retimed by r.

J. r is a legal retiming if dr( e) ?; 0 for every e E E.

2. For any edge u ~ v, we have dr(e) = d(e) + r(u)-

r(v).

3. For any path u,!:,. v, we have dr(P) = d(P) + r(u)-

r(v).

4. For a loop I, we have dr(/) = d(/).

Property 3.1 demonstrates how the retiming method
operates on a PDG. An example of retiming is shown in
Figure 6. The retiming r(A) = I conveys that one delay is
drawn from the incoming edge of node A and pushed to all
of its outgoing edges, A -+ BandA -+ C.

After a graph has been retimed, a prologue is the set
of instructions that must be executed to provide the nec-
essary data for the iterative process. In our example, the
instruction A becomes the prologue. An epilogue is the
other extreme, where a complementary set of instructions
will need to be executed to complete the process. The time
required to run the prologue and epilogue is assumed to be
negligible when compared to the total computation time of
the problem.

Chao, LaPaugh and Sha proposed a flexible algorithm,
called rotation scheduling, to deal with scheduling a DFG
under resource constraints [IJ. Like its name, this algo-
rithm analogously moves nodes from the top of a schedule
table to its bottom. The algorithm essentially shifts the it-
eration boundary of the static schedule down, so that nodes
from the next iteration can be explored. We now introduce
some necessary terminology and concepts used in this pa-

per.

Definition 3.1 Given a PDG G = (V,E, T,d,c) and R C V,

the rotation of R moves one delay from every incoming

edge to all outgoing edges of node.\" in R. The PDG now
is transformed into a new graph (G RJ.

For a schedule table with length L, this definition is
applicable when moving the first row of the schedule ta-
blc to the position L + I. Thcrcforc, this operation implic-

itly retimes the graph. Thc benefit of doing the rotation
is that a few number of nodes arc rescheduled. Thcreforc

only a small part of an input graph is modified instead of

rescheduling the whole graph. Rotation scheduling must

preser\'e the following property:

Property 3.2 Let G = (V,E, T,d,c) be a PDG and R C V.

A set R call be legally retimcd ifand only ij.e,'cry edge from

V -R to R containx ut leuxt olle delay.
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This property implies that the rotation operation always
preserves Property 3.1. After performing the rotation strat-
egy, the dependencies in a new graph are changed, since
some delays in the graph are now moved to new edges.
This allows us to explore the possibility of parallelizing
those nodes that do not have a direct-dependent edge from
their predecessors. Carefully re-scheduling those rotated
nodes to new positions, the schedule length can be de-
creased.

Nevertheless, as mentioned earlier, we also have to
consider the inter-iteration dependency. Hence a new
schedule position assignment for a node has to be carefully
chosen to avoid conflicts in the dependency constraint be-
tween iterations. Finding a valid scheduling position now
becomes more complex since the problem now has incor-
porated pipeline hazards. The major different from the tra-
ditional algorithm is that our algorithm requires checking
not only dependencies of the new graph after rotating a
node but also pipeline hazards which may occur only if
schedule a node to different processors. The following sec-
tion discusses how to find such a dependency and avoiding
the underlying pipeline hazards in detail.

3.2 Minimum Schedule Length
ML(u,v) k, ,We know that a number of delays on any edge u -t v,

where u, v E V, indicates in which iteration, prior to the Since a node may have more than one predecessor, in

current iteration, node II legally produces data for node v. order to have a legal schedule length, one must consider the
This conveys that in order to schedule the rotated nodes, maximum value of ML. In other words, the longest sched-

the pipeline cost constraints must also be satisfied, e.g., the ule length that is produced by computing this function will

inter-iteration dependency between nodes u and v. be the worst case that can satisfy all predccessors.

Definition 3.2 Given a PDG G = (V,E,T,d,c) and nodes

II, v E V where u -+ v E E, the minimum schedule length

II'ith respect to nodes II and v, ML (u, v), is the minimum

.~chedule length reqllired to comp(y lI'ith all data-dependent

constraints.

The following theorem presents the ML function.

Theorem I Given a PDG G = (V,E,T,d,c), an edge e =
II -+ v E E, and d(e) = kfor k > O. a l(~al schedule length

./i)r G must be greater than or equal to ML(u, v), where

ML(u, v) =

with cs(node) being the starting control step of that node
and pipe..cost is either Cno or cIa depending on the archi-
tecture.

Proof: Let L be the schedule length for one iteration. We
know that the minimum number of control steps between
node u at iteration j and node v at iteration j + k is the
pipeline cost associated with u -+ v. There are k -I it-
erations between iterations j and j + k. Since all itera-
tions have the same length L, the following equation is
the relationship of the distance between cs(u) and cs(v):
Lx (k-l) +(L -cs(u)) +cs(v) +~ ?;pipe..cost where ~
represents a number of compensated control steps fulfilling
the pipeline cost requirement. Hence, ~ can be expressed
as: ~ ?; pipe..cost -Lx (k -I) -L + cs(u) -cs(v). In or-
der to obtain a uniform schedule, ~ is distributed over all k
iterations preceding iteration i + k. This distribution results
in a minimum value 0 = r ~ 1, and the new static sched-
ule length that satisfies the constraints with respect to u is
ML = 0 + L. After substituting, we obtain

-~e..cost ~~s(u) -cs(vr

3.3 Algorithm

The scheduling algorithm used in SHARP applies the ML

function to check if a node can legally be scheduled at a

specific position. Therefore, it may happen that the ob-

tained schedule will require some empty slots to be added

to compensate for the inter-iteration dependency situation.

We summarize this algorithm in Figures 7 which demon-

strates how we utilize the two important optimization func-

tions Pipe..rotate and Re-schedulc in SHARP. Note again
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/* extract nodes from the table */
/* operate retiming technique on the nodes */

/* get an upper bound schedule length */

INPUT: G = (V, E, T,d,c), # forwarding buffers, and # pipelines

OUTPUT: shortest schedule table S

~
S:= Start-Up-Schedule(G); Q:= S;

furi:= I .tQIVI!!m I ~

(G,S) := Pipe-rotate(G);

if length(S) < length(Q) ~ Q:= S; fiQ!!
P-lli PipeJotate(G,S) ==

rN:= Deallocate(S);
G, := Retime(G,N);
S:= Re-schedule(G,S,N);

~(G"s)J
P-lli Re-schedule(G,S,N) ==

r~vEN~
cs..min := max{parents(v).cs + cost(parent(v).b;)};

csjnax := length (S);
cs := cs..min;
/. find a minimum available legal control step to schedule v ./
~ (cs < cs..max) 1\ «legal(cs,v,G) =

~) V (pid:= entry(S,cs» = Mt available) ~

cs + +; Q!!
if cs ~ cs..max

~ assign(S, v,cs..max, v.pid);

~ assign(S, v,cs,pid); fi
{* assign at the same pid *{

,* assign at the obtained pid*{

Q!!
~(S)J

~

Figure 7: The SHARP framework: showing how the optimization functions play their roles
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I..;onslder now the PDG shown in Figure 8. In

this example, there are 5 addition-instructions and I

multiplication-instruction. Assume that the target archi-
tecture is similar to the one presented in the introduction

section (i.e., one adder and one multiplier with one-buffer

internal forwarding). After obtaining the initial schedule,

shown in Figure 8(b), the algorithm attempts to reduce the

schedule length by calling the function PipeJotate which

brings A from the next iteration, called A I, and re-schedule

it to cs5 (which is cs4 after re-numbering the table) of the

addition unit. By doing so, the forward buffer of A, which

was granted to B in the initial schedule, is free since this

new A 1 does not produce any data for B. Then, the static

schedule length becomes 9 control steps. After running

SHARP for 4 iterations, the schedule length is reduced to

six control steps as illustrated in Figure 8(c).

4 Experimental Results

We have used SHARP in experiment on several bench-

marks with different hardware assumptions: no for-

warding, one buffer-internal forwarding, sufficient buffer-

internal forwarding (in-frw.), one buffer-external forward-

ing, two buffer-external forwarding and sufficient buffer-

external forwarding (ex-frw.). The target architecture is

comprised of a 5-stage adder and a 6-stage multiplier

pipeline units. When the forwarding feature exists, the

data produced at the end of the EX-stage can be forwarded

to the next exccution cycle of EX-stage as shown in Fig-

ure 4(a).

Notc that the s/({ficient-xx forwarding assumption con-

From experiments, the performance of the one buffer-

internal forwarding scheme is very close to the sufficient

buffer-internal forwarding one. This is because most of

the selected benchmarks have only one or two outgoing

edge(s) (fan-out degree) for each node. Increasing the
number of internal folWarding buffers may slightly in-

crease performance. The performance of a system with one

buffer could be worse than the one with sufficient buffers

for some applications with large fan-out degrees. In this

case, only one successive node can be scheduled earlier

by consuming the data from an only buffer and the rest

of the successive nodes would cause the underlying data-

dependent hazards, i.e., waiting for data being ready from
its parent at WR-stage. For a system with external forward-

ing, data can be forwarded to any functional unit in the

system. Therefore, the resulting schedule length is shorter

than that of the system with internal forwarding capability.

Selecting an appropriate number of buffers depends on

the maximum fan-out degree and the pipeline depth. In

some cases only one or two buffers are enough with ad-

ditional buffers not producing a significant improvement.

As an example, consider column 4 of Table I which de-

scribes a system with external forwarding. Particularly

for the wave digital filter application (benchmark 4) us-

ing only one buffer is the most appropriate since the al-

gorithm results in the maximum reduction, 33%, over the

initial schedule length. Adding 2 or more buffers results

in an II % reduction. For the differential equation solver

application (benchmark 2), selecting two buffers is a good
choice since the algorithm yields the maximum reduction.

The number of available units is also another signifi-
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(a) (c)

Figure 8: (a) The 6-node PDG (b) the first optimized schedule table and (c) the final schedule

Adder riFrmlEX~

(b)

Figure 9: (a) 5-stage adder with internal forwarding unit and 6-stage multiplier with internal forwarding unit (b) Char-

acteristics of the benchmarks



cant criterion. Since most of the tested applications require
more than one addition and one multiplication, increasing
the number of functional units can reduce the underlying

completion time. Doubling the number of adders and mul-

tipliers makes the initial schedule length shorter than that

of the single functional unit version. According to the re-
sult presented in Table 1, for the system with an external
forwarding hardware, processing a large application, such

as the unfolded elliptic filter, the adder unit is occupied at

almost every control step. Adding more functional units is
the only approach that would reduce the schedule length.
Table 2 shows the experimental results for the system with
2 multipliers and 2 adders.

According to the data from Table 2, even though we
have added more functional units to the target system the

hazard reduction percentage (ranging from 2-80 %) still

relies on the characteristic of the applications as well as the
pipeline architectures. For example, without the forward-

ing feature, in the lattice filter application, hazards can be

reduced up to 45 percent in the 2-adder and 2-multiplier
system. For the wave digital filter (benchmark 4), the re-

duction is 80%.
The experimental results from both tables show that

SHARP can reduce a large number of hazards by consider-
ing all available hardware and overlapping pipeline instruc-
tions. Further, in each iteration of SHARP, the algorithm
only needs to reschedule a few number of nodes. Our algo-
rithm can also help designers choose the appropriate hard-

ware architecture, such as the number of pipelines, pipeline
depth, the number of forwarding butTers and others, in or-

der to obtain good performance when running applications

subject to their overhead hardware costs.
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[7] R. A. Kamin, G. B. Adams, and P. K. Dubey. Dy-
namic List-Scheduling with Finite Resources. In In-
ternational Conference on Computer Design, pages

5 Conclusion

Since computation-intensive applications contain a signif- 140-144, Oct, 1994.

icant number of data dependencies and few or no control
instructions, data hazards often occur during the execution [8] A. A, Khan, C. L, McCreary, and M, S. Jones. A

time which degrades the system performance. Hence, re- Comparison of Multiprocessor Scheduling Heuris-

ducing the data hazards can dramatically improve the to- tics. In 1994 International Conference on Parallel

tal computation time of such applications. Our algorithm, Processing, volume II, pages 243-250. IEEE, 1994.

SHARP, supports modern multiple pipelined architectures [9] P M v TL A J .,r ' I '
, ",-ogge. I ne rc "tecture OJ Pipe med Comput-

and applies the loop pipelining technique to improve the M G H 'II N v k 198ers, c raw- " cw lor, I .
system output. It takes the application characteristics in

thc form of a pipeline data-flow graph and target system [10] M, Lam. Software Pipelining. In Proceedings of the

infomlation (e.g., the number of pipelines and depth. their ACM SIGPLAN'88 CO1!(erence on Progaming Lan-

associated types, and their forwarding buffer mechanism) guage Design and Implementation, pages 318-328,

as inputs. SHARP reduccs data hazards by rearranging June 1988.

the execution sequence of the instructions and produces a
schedule in accordance with the system constraints. Not
only does SHARP serve as a scheduling optimization tool,
it can be a simulation tool for a system designer as well.
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