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คํ าสํ าคัญ -- การวิเคราะภาพ, การจดจํ าภาพ, โครงขายประสาทเทียม, การวินิจฉัยโรค Diabetic Retinopathy

1. Introduction

The patterns of disease that affect the fundus of the
eye are varied and usually require identification by
a trained human observer such as a clinical
ophthalmologist. The employment of digital fundus
imaging in ophthalmology provides us with
digitised data that could be exploited for
computerised detection of disease. Indeed many
investigators use computerised image analysis of
the eye, under the direction of a human observer
[1-4]. The management of certain diseases would
be greatly facilitated if a fully automated method
was employed [5]. An obvious example is the care
of diabetic retinopathy, which requires the
screening of large numbers of patients
(approximately 30,000 individuals per million total
population [6,7]). Screening of diabetic retinopathy
may reduce blindness in these patients by 50% and
can provide considerable cost savings to public
health systems [8,9]. Most methods, however,
require identification of retinopathy by expensive,
specifically trained personnel [10-13]. A wholly
automated approach involving fundus image
analysis by computer could provide an immediate
classification of retinopathy without the need for
specialist opinions.

Manual semiquantitative methods of
image processing have been employed to provide
faster and more accurate observation of the degree
of macula oedema in fluorescein images [14].
Progress has been made towards the development
of a fully automated system to detect
microaneurysms in digitised fluorescein
angiograms [15,16]. Fluorescein angiogram images
are good for observing some pathologies such as
microaneurysms which are indicators of diabetic
retinopathy. It is not an ideal method for an
automatic screening system since it requires an
injection of fluorescein into the body.  This
disadvantage makes the use of colour fundus
images, which do not require an injection of
fluorescein, more suitable for automatic screening.

The detection of blood vessels using a
method called 2D matched filters has been
proposed [17]. The method requires the
convolution of each image with filter of size 15×15
for at least 12 different kernels in order to search
for directional components along distinct
orientations. The large size of the convolution
kernel entails heavy computational cost. An
alternative method to recognise blood vessels was

developed by Akita and Kuga [18]. This work does
not include automatic diagnosis of diseases,
because it was performed from the viewpoint of
digital image processing and artificial intelligence.

None of the techniques quoted above has
been tested on large volumes of retinal images.
They were found to fail for large numbers of
retinal images, in contrast with the successful
performance of a neural network.

Artificial neural networks (NNs) have
been employed previously to examine scanned
digital images of colour fundus slides [19].  Using
NNs, features of retinopathy such as haemorrhages
and exudates were detected.  These were used to
identify whether retinopathy was present or absent
in a screened population but allowed no provision
for grading of retinopathy.  The images with
retinopathy still require grading by a trained
observer. Grading greatly improves the efficiency
of the screening service because only those patients
with sight threatening complications are identified
for ophthalmologic management.  This task is more
complex than identifying the presence of
retinopathy because the computer programme must
be able to detect changes such as
neovascularisation, cotton wool spots, vascular
changes and perifoveal exudation [20].   The first
step for achieving this aim is to be able to
automatically locate the main regions of the
fundus—that is, the optic disc, fovea and the blood
vessels. The data from these regions can then be
analysed for features of sight threatening disease.
Identification of the regions of the fundus may also
aid analysis of images for other diseases that
preferentially affect these areas preferentially—for
example, glaucoma and senile macular
degeneration.

In this study, a variety of computer image
analysis methods, including NNs, were used to
analyse images to detect the main regions of the
fundus.

2. Methods
In all, 112 TIF (tagged image format) images of the
fundi of patients attending a diabetic screening
service were obtained using a TOPCON TRC-
NW5S non-mydriatic retinal camera. Forty degree
images were used.
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2.1 Pre-processing of Colour Retinal Images

The captured fundus images were of dimensions
570×550 pixels. Each pixel contained three values,
red, green, and blue, each value being quantised to
256 grey-levels. An example can be seen in
Figure1. The contrast of the fundus images tended
to diminish as the distance of a pixel from the
centre of the image increased. The objective of pre-
processing was to reduce this effect and to
normalise the mean intensity. The intensities of the
three colour bands were transformed to a intensity-
hue-saturation representation [21]. This allowed
the intensity to be processed without affecting the
perceived relative colour values of the pixels. The
contrast of the intensity was enhanced by a locally
adaptive transformation. Consider a sub-image, W
(i, j), of size M×M pixels centred on a pixel located
at (i, j). Denote the mean and standard deviation of
the intensity within W(i, j) by f W  and σ

W

respectively. Suppose that f
max

 and f
min

 were the
maximum and minimum intensities of the whole
image.

The adaptive local contrast enhancement
transformation was defined by equations (A1) and
(A2) of appendix A.

Figure 2 shows the effect of pre-
processing on a fundus image, Figure 1.

2.2 Recognition of the Optic-Disc

The optic-disc appeared in the fundus
image as a yellowish region. It typically occupied
approximately one seventh of the entire image, 80×
80 pixels.  The appearance was characterised by a
relatively rapid variation in intensity because the

“dark” blood vessels were beside the “bright”
nerve fibres. The variance of intensity of adjacent
pixels was used for recognition of the optic disc.

Consider a sub-image W(i, j) of
dimensions M×M centred on pixel (i, j). Let <f>W

(i,j) as defined by equation (A3) be the mean
intensity within W(i, j). (If W(i, j) extended beyond
the image, then undefined intensities were set to
zero and the normalisation factor was
correspondingly reduced.)

A variance image was formed by the
transformation

( )g i j p i j f f
W W( , ) ( , ) ,→ = −2 2

                 (1)

where the sub-image was 80×80 pixels.
An image of the average variance within sub-
images was then obtained as
p i j q i j p W i j( , ) ( , ) ( , )→ =         (2)

The location of the maximum of this
image was taken as the centre of the optic-disc,
( , )i jd d .
( , ) arg max

( , ) ( , )i j pd d W i j W i j=       (3)

The variance image of Figure 2 is shown
in Figure 3 and the location of the optic-disc in
Figure 7.

2.3 Recognition of Blood-Vessels

Blood vessels appeared as networks of
either deep red or orange-red filaments that
originated within the optic disc and were of
progressively diminishing width. A multilayer
perceptron NN was used to classify each pixel of
the image [22-24]. Pre-processing of the image was
necessary before presentation to the input layer of

Figure 1: Digital Colour Retinal Image. Figure 2: Retinal image after pre-processing
by local colour contrast enhancement.
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Figure 6: The classified image after post-processing
to remove small regions.

the NN. Pattern classifiers are most effective
when acting on linearly separable data in a small
number of dimensions.  More details are described
in appendix B.

The values of the three spectral bands of a
pixel were strongly correlated.  The principal
component transformation [25] was used to rotate
the axes from red-green-blue to three orthogonal
axes along the three principal axes of correlation,
thus diagonalising the correlation coefficient
matrix. The values along the first axis exhibited the
maximum correlated variation of the data
containing the main structural features.
Uncorrelated noise was concentrated mainly along
the third axis, while, in general, texture tended to
be along the second. The original data was reduced
in dimensionality by two thirds by the principle
component transformation.
A measure of edge-strength was obtained for each
pixel by processing the image from the first
principal component using a Canny edge-operator
[26-28].  This was used to enhance vessel / non-
vessel separability. 2.4 Neural Network Algorithm

Each pixel of a fundus image was
classified as vessel or non-vessel. The data input to
the NN were the first principal component [29] and
edge strength values from a sub-image of 10×10
pixels localised on the pixel being classified, as
shown in Figure 4. The net was a three-layer
perceptron having 200 input nodes, 20 hidden
nodes and two output nodes.

A training/validation data set of 25,094
examples, comprising 8,718 vessel and 16,376
non-vessel, was formed by hand and checked by a
clinician. The back propagation algorithm with

Figure 3: The variance image of Figure 2.

Figure 4: An example of the data input to the net, of
size 2×10×10 pixels. In this example, the pattern
was classified as vessel.

Figure 5: Classification of the image Fgure 2 into
vessels/non-vessels.
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Figure 7: The results of automatic recognition of
the main components of the fundus from digital
fundus colour image.

early stopping was applied [30,31], using 5/6 of the
data for training and 1/6 for validation.

2.5 Postprocessing [32,33]

Figure 5 shows the classification of the entire
image into vessel and non-vessel, denoted as black
and white respectively.

The performance of the classifier was
enhanced by the inclusion of contextual (semantic)
conditions. Small isolated regions of pixels that
were misclassified as blood vessels were
reclassified using the properties that vessels occur
within filaments, which form networks. Three
criteria were applied -- size, compactness and
shape. Regions smaller than 30 pixels were
reclassified as non-vessels. The compactness of a
region may be expressed using the ratio of the
square of the perimeter to the area [34] – for
example, circular discs have a ratio of 4π. Regions
whose ratios were less than 40 were reclassified as
non-vessels. Approximating a region by an
elliptical disc yields a measure of shape in terms of
the ratio of the major and minor axes [35].
Regions smaller than 100 pixels with a ratio
smaller than 0.95 were reclassified as non-vessels
as can be seen in Appendix C. Figure 6 shows the
effect of such post-processing on an image.

Figure 8: A sample of images showing the results of the recognition of the main components from digital
fundus colour images.
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2.6 Recognition of the Fovea

The centre of the fovea was usually
located at a distance of approximately 2.5 times the
diameter of the optic-disc, from the centre of the
optic-disc. It was the darkest area of the fundus
image, with approximately the same intensity as
the blood vessels.  The fovea was first correlated to
a template of intensities.  The template was chosen
to approximate a typical fovea and was defined by;

g i j i j( , ) exp ( )
= −

− +





















128 1 1
2 2

2 2

2σ
                 (4)

Where (i, j) are relative to the centre of the
template. A template of size 40×40 pixels was
employed, the standard deviation of the Gaussian
distribution being σ = 22. Given a sub-image W(i,j)
centred on pixel (i, j) of dimensions M×M with

intensities g(k, l),(k, l)∈W(i, j), the correlation
coefficient of W at (i, j) with an image having
intensities f(i, j) is [21]
γ ( , )i j =
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The correlation coefficient γ(i, j) is scaled
to the range [-1 ≤ γ ≤ 1], and is independent of
mean or contrast changes in f(i, j) and g(i, j). The
range of values runs from anti-correlation, -1,
through no correlation, 0, to perfect correlation +1.

The location of maximum correlation
between the template and the intensity image,
obtained from the intensity-hue-saturation

Figure 9: Example of patch of size 20x20 pixels used to measure the accuracy of vessels recognition.
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transformation, was chosen as the location of the
fovea, subject to the condition that it be an
acceptable distance from the optic-disc and in a
region of darkest intensity.

The criteria deciding the existence of the
fovea were a correlation coefficient more than 0.5
and a location at the darkest area in the allowed
neighbourhood of the optic disc.

Figure 7 and 8 give examples of foveal-
location, the cross indicates the located position in
each example.

2.7 Validation of the Accuracy of Detection of
Regions

An experienced ophthalmologist observed
the localisation of the optic disc and fovea by the
algorithms. In order to provide independent test
data for the blood vessels, the same
ophthalmologist manually traced the vessels of 73
randomly selected patches of 20 x 20 pixels taken
from the images. The traced vessels were then
compared with the positions of the vessels
identified by the neural network. An example of a
random patch is shown in Figure 9.

3. Results
The recognition rates for optic disc, blood

vessels and fovea were as follows:
(1) The optic disc was identified incorrectly in one

image. The sensitivity and specificity for the
detection of the optic disc recognition were
99.1% and 99.1% respectively.

(2) The recognition rate of blood vessels by the
neural network was 99.56% for training and
96.88% for validation data respectively.  The
sensitivity and specificity of the detection of
blood vessels were calculated for each of the
73 patches.  The overall sensitivity and
specificity for the detection of the blood
vessels were 83.3% (SD 16.8%) and 91.0%
(SD 5.2%) respectively.

(3) To assess the accuracy of recognition of the
fovea, the images were separated into three
groups: Group 1: 71 images presented all of the
fovea of within the image.  In 60 the fovea was
detected correctly  (84.5%) but in 11 (15.5%)
the fovea was unidentified; Group 2: in 29
retinal images the fovea was at the edge of the
image but more than half was present on the
image.  In 18 images the correct position of the
fovea was located (62.1%).  In one image the
fovea was detected inaccurately in the nasal
retina  (3.4%).  The fovea was not identified in
10 images (34.5%); Group 3: 12 retinal images
either presented no fovea or less than half of the
foveal area was within the image. The

algorithm did not identify a fovea in these
images.

The overall sensitivity and specificity of the
detection of the fovea were 80.4% and 99.1%
respectively.

4. Discussion
In this study computer based algorithms

were used to detect the main regions of the fundus
without any intervention from an operator.  The
accuracy of the detection was high for the optic
disc, blood vessels and the fovea (especially when
the image contained the whole foveal area).  It is
hoped that the detection of these regions will aid
the examination of fundal disorders.  The optic disc
was particularly reliably detected and may be
examined in the future for patterns of disease such
as glaucoma [36]. The fovea was missed in a
number of cases but usually when there was poor
centration of the fovea in the image.  This can be
easily remedied by more careful fundus
photography. The detection of the major blood
vessels was performed using NN analysis.  NNs
have been employed in the past in other areas of
medicine [37] and ophthalmology [38,39] because
of the capability of these programs to cope with
highly variable images.  Indeed, NN have already
been used before to detect features of retinopathy
but employing minimal pre-processing [40]. The
pre-processing and post-processing used in this
study reduces the reliance upon the NN and
improves the efficiency of the computer analysis.
The smaller blood vessels were more difficult to
detect. However, the method used to calculate the
accuracy of the detection of the blood vessels by
comparing vessels recognised by the NN technique
with the vessels traced by the ophthalmologist may
introduce some errors.  It was technically difficult
for the ophthalmologist to locate subjectively the
exact position of vessels, especially at their edges.
Therefore, the accuracy of the ophthalmologists’
identification of blood vessels may have been
variable.  Other methods may need to be explored
in order to detect all of the blood vessels—for
example, active contour models (SNAKES)
[41,42],  to avoid confusion with features such as
retinal haemorrhages. There may be other
applications for this technology-- for example, the
accurate detection of the major blood vessels may
allow the “fingerprint” of the blood vessels to be
used for identifying individuals in a way similar to
that in which iris crypts have been utilised [43] .

In this study it was possible to detect the
main regions of the fundus image.  Once these
have been identified, the data from these regions
can be analysed for abnormality.  Of course some
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of the diseases that we would propose to study may
alter the appearance of these regions, reducing their
detection.  However, the algorithms were designed
to minimise this risk, particularly for disease
processes such as diabetic retinopathy.  In diabetic
retinopathy further algorithms will be required to
detect features which indicate risk to the patients’
sight such as neovascularisation, cotton wool spots,
venous changes and parafoveal exudation. The
detection of other features of retinopathy in
diabetes (haemorrhages and exudates), and other
disorders such as senile macular degeneration, will
be facilitated by the removal from the image data
set of complex regional features such as the blood
vessels and the optic disc.  In diabetes, grading of a
patient’s retinopathy by fundus imaging and
computer analysis, at the site of acquisition of the
image, would allow an immediate opinion for the
patient on the urgency of referral for an
ophthalmologic opinion.

In conclusion, computer algorithms were
able to detect regions of the fundus.  These may be
exploited for the examination of patterns of
disease.  This may have particular relevance to the
management of common ophthalmologic disorders
such as diabetic retinopathy.

Appendix A: colour local contrast
enhancement

The RGB colours, where R, G, and B are
abbreviated from the colours Red, Green, and Blue
respectively, represent the colour model used for
computer graphics or image analysis. Another
colour model, which will be used in this work, is
the IHS model, where I, H, and S are abbreviations
for Intensity, Hue, and Saturation respectively. The
RGB and IHS have an invertible relation between
them [21].

The importance of an RGB model is to
display colour images. To present the full colour
techniques for image enhancement in some detail,
we are interested in the IHS model. The IHS model
is best suited to present full colour techniques for
image enhancement in detail. It is important that
once the IHS model is applied to enhance an image,
it must be converted back to RGB for visual
display. The IHS model is suitable for image
enhancement because the intensity component is
decoupled from the colour information of the
image. Applying the local contrast enhancement
technique to the intensity component and
converting the result to RGB for display will not
affect the colour content of the image.

Local Contrast Enhancement [44]

Let the intensity, f, of the picture elements
(pixels) of an N × N digital image be indexed by

(i,j) 1≤ i, j ≤N. Consider a subimage of size M × M
centred on (i, j) in this paper M=49. Denote the
mean and standard deviation of the intensity within
W by <f>W and σW(f) respectively.

The objective is to define a point
transformation dependent on W such that the
distribution is localised around the mean of the
intensity and covers the entire intensity range. The
implicit assumption is that W is large enough to
contain a statistically representative distribution of
the local variation of grey levels, yet small enough
to be unaffected by the gradual change of contrast
between the centre and the periphery of the fundus
image. The adaptive contrast enhancement
transformation is defined by
f i j g i j( , ) ( , )→
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while fmax and fmin are the maximum and minimum
values of intensity within the whole image with

f
M

f k lW i j
k l W i j
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  (A3)

 (A4)

The local contrast enhancement function
provides large contrast enhancement for an initially
small σ (poor contrast) and little contrast
enhancement for an initially large σ (high contrast).

As a result of local contrast enhancement,
the dark area is brighter and clearer showing more
detail. However, the technique of local contrast
enhancement not only adjusts the contrast of the
image but also increases the noise. Hence, a 2D
Gaussian smoothing filter or median filter has been
applied in order to reduce the noise before the local
contrast enhancement process.

Appendix B: prepare data for NN
First Principal Component [45]

The PCA (principal component analysis)
technique is the same as the Karhunen Loeve
transform technique, also known as Hotelling
transform, which aims to form linear combinations
of the image bands in order to maximise the
information content in the highest order bands.
Giving a set of K image bands, denoted by the
intensities of N2 pixels fa(i) for i=1,...,N a = 1,...,K.
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We first form a set of zero mean images by
subtracting off the mean of each band

         (B1)           

Where

          (B2)

To simplify the formulation, it is
convenient to write the set of K image bands ga(i)
as a N2 × K matrix, where each image of the
spectral band forms a column of the matrix
normally,

 (B3)

We define a K by K matrix C as
         (B4)

where GT is the transpose of G. The
matrix C, can be expressed in terms of the input
image ga(i) as having elements,

T

(B5)

This is the un-normalised correlation
between the ath and the bth image bands.

Hence C is the spectral correlation matrix
of the images. We form a matrix H of uncorrelated
images by the orthogonal K × K matrix transform
B.
 H = GB    (B6)

Since the columns of H are uncorrelated
HTH = Λ          (B7)

where Λis a diagonal matrix

               (B8)

it follows that
CB = BΛ    (B9)

The above equation is just the familiar
eigen vector/value problem where the λa are the
eigenvalues of the matrix C and the columns of the

matrix B are the corresponding eigenvectors. Since
the matrix C is symmetric, cab = cba, the
eigenvector problem involves finding the
eigenvalues and vectors of a real symmetric matrix.
Hence we can solve for the eigenvalues and vectors
by applying Jacobi transformations [46]. Finally,
the transform of the set of K orthogonal images ha
(i), being linear combinations of the normalised
images ga(i), is given by

   (B10)

for a = 1, ... , K and h1(1), h1(2), ... , h1(N)
will be the first component of the set of principal
components which will be used together with the
edge gradient as the pattern data for classification
by a neural network.

Edge Gradient

In this paper we applied the edge operator
to the first component of a PCA image. Canny has
defined an edge detection operator, which is
optimal for step edges corrupted by white noise.
The operator that we use in this work is the
implementation of operator obtained by Spacek.
The reasons that we use Spacek's solution because
Canny was unable to construct a solution of the
defining conditions and so approximated one by a
difference of gaussians. Spacek demonstrated that
performance of his solution was superior to
Canny's approximation. Since the operator satisfies
the conditions proposed by Canny we refer to it as
the Canny edge operator.

The Spacek method that we use takes the
form [28].

h(x) = 16.9564 sin(x) + 13.0161 cos(x) –
18.8629 exp(x) + 4.8468 exp(-x) + 1              (B11)

h(x) has been defined in the interval
(-1,0). Values in the range (0, 1) may be obtained
from the anti-symmetry of the edge operator. For
our application, we have modified to use the Canny
edge filter in two dimensions by smoothing the
operator in the orthogonal direction, hence yielding
two dimensional edge kernels hx(x,y) and hy(x,y)
for edge strengths in the x, y directions
respectively. Now we apply the 2D edge filter in x
and y directions. The response of the filters to the
image is given by a 2D-convolution integral.

The response an image to an edge kernel
is given by a 2D discrete convolution, the edge
strength in the x direction

(B12)

with a similar equation for ey(x, y). The intensity of
the edge image intensity is defined by

  )()( ><−= ififg aaa

)(1)(
2

1
2 if

N
if

N

i
aa ∑

=

>=<



















=

)()()(

)2()2()2(
)1()1()1(

22
2

2
1

21

21

NgNgNg

ggg
ggg

G

K

K

K

Κ
ΜΟΜΜ

Κ
Κ

,GGC T=

∑ ∑ ∑

∑

∑

= = =

=

=

−=

><−><−=

=

2 2 2

2

2

1 1 1
2

1

1

)()(1)()(     

))()()()()((     

)()(

N

i

N

i

N

i
baba

N

i
bbaa

N

i
baab

ifif
N

ifif

ifififif

igigc



















=Λ

Kλ

λ
λ

Λ
ΜΟΜΜ

Λ
Λ

00

00
00

2

1

∑
=

=
K

b
aaba igbih

1

)()(

∑∑ −−= ηξηξηξ ddyxfhyxe xx ),(),(),(



216










><−><−><−
><−><−><−

=
∑∑

∑∑
2

2

)())((
))(()(

yyyyxx
yyxxxx

c
iii

iii

(B13)

Appendix C: post-processing
Area

The simplest and most natural property of
a region is its area, given by the number of pixels
of which the region is comprised. This method was
used to remove the small regions of the output
vessels/non-vessels classification from neural net,
small regions with less than 30 pixels were
removed.

Compactness [33]

Compactness is a commonly used shape
descriptor independent of linear transformations
given by

 (C1)

The most compact region in Euclidean
space is a circle. Compactness assumes values in
the interval (1, ∞) in digital images if the boundary
is defined as an inner boundary. The limit value of
compactness in this work is 40, within the region
less than 100 pixels will be determined.

Ellipse Parameter

The ellipse parameter used is the ratio between the
major and the sum of the two (major and minor)
axes of an ellipse. This parameter describes the
shape of the region and lies between 0.5 (a circle)
and 1 (a line). The method that we used to
calculate this parameter is the same as employed in
PCA. Considering a region, with two variables, x
variable (positions of the region pixels in x co-
ordinate) and y variable (positions of the region
pixels in y co-ordinate). The major and minor axes
of the region can be calculated as the eigen values
of the covariance matrix:

(C2)

where xi, yi are co-ordinates in the x, y directions of
the region and <x>, <y> are the average value of
the region's x, y co-ordinates. From this property,
the ellipse parameter of circle, ellipse, and line are
0.5, 0.5 < ellipse param <1, and 1 respectively.
From our experiments with the test images of
variable shapes, we decided to use an ellipse
parameter of less than 0.95 the small regions (less
than 100 pixels) to classify then as non-vessels.
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