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Robust Stabilization of Uncertain Linear System with 
Distributed State Delay* 
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ABSTRACT – In this paper, we present the theoretical development to stabilize a class of 
uncertain time-delay system. The system under consideration is described in state space model 
containing distributed delay, uncertain parameters and disturbance. The main idea is to transform the 
system state into an equivalent one, which is easier to analyze its behavior and stability. Then, a 
computational method of robust controller design is presented in two parts. The first part is based on 
solving a Riccati equation arising in the optimal control theory. In the second part, the finite 
dimensional Lyapunov min-max approach is employed to cope with the uncertainties. Finally, we 
show how the resulting control law ensures asymptotic stability of the overall system.. 
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1. Introduction on  control theory of which resulting control law 
is linear [9][10] 

∞H

It is well known that uncertain parameters and 
disturbance in practical control system such as 
modeling errors, linearization approximations, etc., 
are always found and disturb the system. On the other 
hand, the time delay which commonly encountered in 
various engineering systems is frequently a source of 
instability. Therefore, the problem of robust 
stabilization of state delayed system with uncertain 
parameters have received considerable attention of 
many researchers, and many solution approaches 
have been proposed, see, for example [1~9] and 
reference therein. One approach which frequently 
applied to deterministic robust control is by means of 
the so-called “second method” of Lyapunov. The 
design is based on a nominal linearization of given 
system with time-varying, non-linear uncertain 
elements of the system and the extraneous 
disturbances grouped into an unknown but bounded 
function. Only knowledge of compact sets bounding 
the system uncertainties is required. Furthermore, if 
they satisfy certain matching conditions, complete 
insensitivity to the system variations can be achieved, 
see, for example [1~8] and reference therein. Other 
often-used approach is based 

In this paper, A class of linear system containing 
constant known distributed state delay, uncertain 
parameters and additive disturbances are presented. 
Determination of controller parameters can be 
divided into two parts. First, base on the improved 
Fiagbedzi and Pearson theorem [11~13], the linear 
transformation is utilized to reduce the original 
problem into an equivalent one which is easier to find 
the solution. Next, by using the well-known 
Lyapunov min-max approach of numerical example 
in section 4 demonstrates the proposed control 
method. Gutman [14], a suitable stabilizing control 
law is derived. 

This paper is organized as follow. In the next 
section, we introduce the uncertain system considered 
here and the state-feedback based transformation 
technique. In section 3, we derive the required robust 
control law. A Some final remarks and conclusion 
appear in Section 5. 

2. Problem Formulation 
Consider a class of uncertain time-delay systems 

 which is defined by the following state 
equations 

)( dS
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Note here that physical meaning of matching 
conditions defined in Assumption 2.2 is all 
disturbance and uncertainty effects disturb into the 
system though the same channel as the control. And if 
matching conditions are satisfies, we can rewrite 
system (  to the form )dS
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 ))()(( tvtuB ++  (2.2) where  is the current value of the system 
state,  is the control function,  is 
the additive disturbance    are known 
constant matrices of appropriate dimensions, 

nRx∈
mR∈tu )( lRt ∈)(ω

,A ,hA B

( )nn
rA ×∈ Rr− ];0,L [1  is a matrix whose elements 

are integrable functions on [ ,  ]0,r− ),(t (tAhA∆ ),∆  
  are matrices whose elements are 

continuous, unknown but bounded functions, 
 is a known constant delay time and the 

initial function of system be specified as 

),t ∆

+∈R
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]
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Transformation Technique 
We begin with the linear transformation T  defined 
by 

c

     ( ) )()()( txTtz c=  
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h h
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ASSUMPTIONS 

  ∫ ∫− −
+−−−+

0 0
)()(

r
r

A ddrtxrAe c

θ

τ θτθθBefore proposing our controllers, the following 
assumptions are made throughout here.  (2.4) 
Assumption 2.1: The nominal system of ; i.e., the 
system  which 

)( dS
)( dS =∆ )(tA =)∆ (tAh ,0)( =∆ trA  

   are spectrally stabilizable. ,0 (tw)( =∆ tB 0) =

where  is a matrix yet to be defined. nn
c RA ×∈

 
Proposition 2.1 : 

Assumption 2.2: For all  there are exist 
continuous matrix functions   
and  of appropriate dimensions such that 

,+∈ Rt
(tH ), ),(tHh ),(tHr

)(tE

Let the matrix  be defined by cA
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Ar dAe c θθθ 

a)  , )()( tBHtA =∆ and 
b)  , )()( tBHtA hh =∆  )()()( dcdu SAS σσσ ⊂⊂  (2.6) 
c)  , )()( tBEtB =∆ where 

d)  ( ItEtEI T δ≥++ )()(
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hs AeAsI −−−det(  
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 );({)( ddu SsS σσ ∈=   , }0)Re( ≥s)()()()()( htxtHtxtHx ht −+≥µ  
 

 )()()(
0

tdrtxtH
r

r ωθθ +−−+ ∫− , Then,  satisfies (2.1) and hence (2.2), if and only if 
 satisfies the system of the form  

)(tx&
)(tz& )( oS

and 
  )()( tEtE ≥µ   ))()(()()( tvtuBtzAtz c ++=&  (2.7) 

g)  information  and µδ , Eµ  are available  
Furthermore, the following properties are true:  
(a)  ( )BAc ,  is a stabilizable pair, 
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(b)  if ,0)(lim =∞→ tzt  then 0)(lim =∞→ txt  { }
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By using the Leibniz’s formula [15], it is 
straightforward to verify that (2.2) in conjunction with 
the transformation (2.4) yields (2.7); see Appendix. 
Property (a) follows from Theorem 3.2 of [8]. To show 
the property (b) and (c), are obtained using Laplace 
transform (2.4) to obtain, after some rearrangement, 

and hence, 
),max(,0)( rhttt f =>∀=ψ . 

Note here that (2.6) implies that all eigenvalues of the 

transfer function ∆  are stable. 
Consequently, it can be verified that 
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 The above analysis imply that )(tψ  does not 
influence stability of . Furthermore, asymptotic 
stability of  implies asymptotic stability of  

since 

)(tx
)(tz )(tx
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3. Controller Design 
 
In this section we present a suitable controller design, 
which is based on the Min-Max Approach of 
Gutman, to stabilize . Next we will proof that the 
controller can make the system asymptotically stable. 

)(tz
  { })(0 θ−−= htxL . 
where the operator  is defined as the Laplace 
Transform. 

{ }L .

  
Theorem 3.1 : Suppose there exists a transforma-tion 
satisfying the hypothesis of proposition 2.1. Then, for 
given  > 0, there exist a positive definite solution P 
to the Riccati equation 

Q
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where the nonlinear gain 
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Substitute in the above equality to get )(tuL

 [ ] )()( tzPPBBPAPAtzV T
c

T
c

T
z −+−=&    te≤ 2

  ( ))()()(2 tvtuPBtz N
T ++ Therefore, 

)()()()()( tttQztztV T
z βα ++−=&    ( ))()()(2)()( tvtuPBtztQztz N

TT ++−=

  tT etQztz φ−+−≤ 2)()(since v  still has same value as defined in (2.3), we 
have 

)(t

By using [17], It can be verified that closed-loop 
system (2.7) with control law (3.2) is  asymptotically 
stable.  � 

)()()()( tttQztzV T
z βα ++−=&  

where 
)())(()(2)( tutEIPBtzt N

T +=α   
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distributed time delay with its linear part as defined 
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5. Concluding Remarks 
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We have presented a method to stabilize uncertain 
system with distributed time delay. By using 
matching condition defined in Assumption 2.2, we 
can change system model (2.1) into new model (2.7) that 
easier to be applied with the special linear 
transformation. The transformation is used to reduce 
the system state model so that we can obtain a 
stabilizing condition as shown in Proposition 2.1. In 
the other word, choosing , such that 

 stable, paves the way to feasible 
design of the robust controller. And it explains why 
stability of  can imply stability of . As a 
consequence, we obtain a new design of robustly 
stabilizing controller for the system. 

cA

))((1
cAsIs −∆−

(tz ) )(tx

 In General, the problem of determining the 
roots of  systems has been considered by many 
authors.  Base on Manitus method [16], Fiagbedzi and 
Pearson had proposed the solution for distributed 
systems in 1987, see [13] for references. 

Fig 1. Simulation Result, 
 
Furthermore, figure 2 shows the response of system 
(4.1) with only linear control law (3.3). It can be 
observed that the control law without nonlinear part 
can not stabilize the system. In the other hand, the 
nonlinear part is sufficient to control the effect of 
uncertainties and disturbance for stabilizing the 
system 

 Finally, we note that the applicability of our 
approach is not limited to stabilization problem. For 
instance, it is feasible to extend our result in section 3 
to cope with the model-following control of which 
concept is proposed in [7]. 
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6. APPENDIX 
 
Supplementary proof of Proposition 2.1 
From  the hypothesis of Proposition 2.1, we have 
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   nonlinear control law By using the Leibniz's formula [12], it can be verified 

that  
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which is equivalent to This can be verified easily by direct integration and 

then using (A.3). Finally, direct substitution (A.5) in 
(A.4) yields the required result. 
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	Assumptions
	Transformation Technique
	
	By using [17], It can be verified that closed-loop system (2.7) with control law (3.2) is  asymptotically stable. (




