
243

Parallel K-means Clustering Algorithm on NOWs

Sanpawat Kantabutra and Alva L. Couch
Department of Computer Science

Tufts University, Medford, Massachusetts, 02155, USA
http://www.cs.tufts.edu/~{sanpawat, couch}

ABSTRACT – Despite its simplicity and its linear time, a serial K-means algorithm's time
complexity remains expensive when it is applied to a problem of large size of multidimensional vectors. In
this paper we show an improvement by a factor of O(K/2), where K is the number of desired clusters, by
applying theories of parallel computing to the algorithm. In addition to time improvement, the parallel
version of K-means algorithm also enables the algorithm to run on larger collective memory of multiple
machines when the memory of a single machine is insufficient to solve a problem. We show that a problem
size can be scaled up to O(K) times a problem size on a single machine.

KEY WORDS -- Clustering algorithms, K-means algorithms, Parallel Algorithms, Computational
Geometry, Data Mining

บทคัดยอ -- ถึงแมวาอัลกอริทึมเคมีนจะงายและทํ างานในเวลาเชิงเสน แตเมื่อใชในการแกปญหาเวกเตอรแบบ
หลายมิติขนาดใหญก็จะใชเวลาในการทํ างานที่มากและซับซอน ในบทความนี้ไดมีการนํ าเสนอวิธีการปรับปรุง
อัลกอริธึมเคมีนโดยการนํ าการคํ านวณแบบขนานเขามารวมดวย ผลที่ไดแสดงใหเห็นวาไดผลดีขึ้นดวยปจจัย O
(K/2) โดยที่ K คือจํ านวนกลุมที่ตองการ นอกจากนี้อัลกอริธึมเคมีนรุนที่ใชการคํ านวณแบบขนานยังสามารถ
ทํ างานในเครื่องหลายๆ เครื่องที่มีหนวยความจํ าแบบสะสมไดขนาดใหญ เมื่อหนวยความจํ าของเครื่องใดเครื่อง
หนึ่งไมเพียงพอตอการแกปญหาอีกดวย ผลการทดลองแสดงใหเห็นวาขนาดของปญหาสามารถเพิ่มขึ้นในขนาด O
(K) เทาของขนาดปญหาบนเครื่องเดี่ยว

คํ าสํ าคัญ -- อัลกอริทึมแบบกลุม อัลกอริทึมเคมีน อัลกอริทึมแบบขนาน เรขาคณิตเชิงคํ านวณ เหมืองขอมูล

1. Introduction
Clustering is the grouping of similar objects and a
clustering of a set is a partition of its elements that
is chosen to minimize some measure of
dissimilarity [1]. Clustering algorithms are often
useful in applications in various fields such as
visualization, pattern recognition, learning theory,
and computer graphics. A classical vector
quantization problem is usually solved as a
gradient-descent problem. However, in practice a
more convenient computing scheme is batch
computation, usually named the K-means
algorithm [2].

Given a set S of N D-dimension vectors without
any prior knowledge about this set, the serial K-
means clustering algorithm forms K disjoint
nonempty subsets {C1,C2,C3,…,CK} of vectors

such that each vector vij, 1≤ i ≤ K, 1≤ j ≤ |Ci| has
the closest distance (i.e., Euclidean distance) to
means Xi, 1≤ i ≤ K [1] (See figure 1 for an
example of K-means categorization of 25 points for
K = 4). The algorithm achieves this result by
minimizing a square-error function E such that

E = Σi=1,K Σv∈Ci || Xi - v ||2

A K-means algorithm is measured by two criteria:
intra-cluster criterion and inter-cluster criterion. An
intra-cluster criterion (i.e., the inner summation)
represents how good the cluster Ci is. Typical intra-
cluster criteria are the diameter, radius, variance,
variance multiplied by |Ci|, variance multiplied by
|Ci|2 of point set |Ci|, a Euclidean distance, and a
square-error criterion. In this paper we use a
square-error function as our criterion because 1)
our purpose is to parallelize K-means algorithm
and 2) the square-error criterion, defined above, is

244

the most commonly used and a good measure of
the within-cluster variation across all the partitions
[5]. For more information about other criteria, we
suggest the paper [1] by Mary Inaba, Naoki Katoh,
and Hiroshi Imai. The inter-cluster criterion (i.e.,
the outter summation) is defined as the total cost of
the K clusters. Generally, the inter-cluster criteria
are max{intra(C1),intra(C2),…,intra(CK)} and Σ
i=1,Kintra(Ci) where intra(Ci) is an intra-cluster
criterion of Ci. In this paper we use the latter
criterion. By minimizing each intra-cluster criterion
locally (i.e., moving only vectors that reduce the
error function to a new appropriate cluster), we
expect that the algorithm will globally yield an
optimal inter-cluster criterion. The K-means
clustering algorithm is then to find a K clustering
that minimizes the inter-cluster criterion or the
error function.

Serial K-means Algorithm
1. Randomly select |S|/K members of the set S to

form K-subsets
2. While Error E is not stable:
3. Compute a means Xi, 1≤ i ≤ K for

 each of the K subsets.
4. Compute distance d(i,j), 1≤ i ≤ K, 1≤ j ≤ N

 of each vector such that d(i,j) = || Xi - vj ||
5. Choose vector members of the new K

 subsets according to their closest distance
 to Xi, 1≤ i ≤ K.

6. End
The serial K-means algorithm has time complexity
O(RsKN) where K is the number of desired clusters
and Rs is the number of iterations [3].

2. Proposed Algorithm
In this section we present some related works,
motivations, materials, our parallel K-means
algorithm, and complexity analysis.

2.1 Related Works and Motivations
In [4] authors present a clustering using a coarse-
grained parallel genetic algorithm to obtain an
optimal minimum squared-error partitions and use
a distributed algorithm to improve the total
execution time. Their algorithm is based on a
SIMD model. In [7] authors present an optimal
adaptive K-means algorithm with dynamic
adjustment of learning rate to induce a near-optimal
clustering solution in a situation where the pattern
ensemble is not available. In [8] authors define the
notion of a well-separated pair decomposition of
points in d-dimensional space and develop efficient
sequential and parallel algorithms for computing
such a decomposition. The authors then present a

decomposition of multidimensional point sets and
its applications to k-Nearest-Neighbors and n-body
potential fields. Their parallel algorithm is based on
a CREW PRAM model. These are some papers
related to parallel clustering and K-means
algorithms that are known to us.

Many applications for clustering algorithms,
particularly applications in data mining, usually
require the algorithms to work on massive data sets
with an acceptable speed. For instance, in [6]
NASA launches satellites for studying the earth's
ecosystems. The Earth Observing System (EOS) is
capable of generating about a terabyte of data per
day. These terabytes of data will then be used to
identify anomalies on earth by a visualization
program. A grouping of such data sets could be
done by clustering algorithms. However, when a
data set is large, processing time and space
requirement by the serial algorithms have become a
serious concern. To our knowledge, no parallel
non-heuristic K-means clustering algorithm has
been developed on a message-passing model of a
network of workstations (NOWs). We are
interested in developing K-means algorithm
because it is simple and widely used in practice. In
addition, we are also motivated by an advantage of
wide availability and relatively inexpensive costs
of parallel computing on a network of
workstations. Our contributions in this paper are
then 1) to significantly reduce time complexity of
the serial K-means algorithm by data parallelism
and 2) to eliminate a limitation of memory
requirement on a single machine when data sets are
massively large.

2.2 Materials and Parallel K-means
Algorithm

We use a network of homogeneous workstations
with Ethernet network and use message-passing for
communication between processors. In an Ethernet
network, all communications consist of packets
transmitted on a shared serial bus available to all
processors [9]. Message-Passing Interface (MPI) is
used as a library routine in C programming
language for communication between processes.
The following is a description of the parallel K-
means clustering algorithm. A master-slave single
program multiple data approach (SPMD) is used.

Let Tstartup be a constant time needed in sending a
blank message and let Tdata be a constant time
needed to send one data element (i.e., 4 bytes of
integer). Note that in practice these two time
constants may vary from one system to another.

245

Master Process Complexity
1.Randomly form K equal subsets
 of set S
2.Send each subset to each of K(Tstartup+ N/KTdata)
 the K slaves
3.Receive K resulting subsets from
 K slaves.

Slave Process Complexity
1.Receive a vector subset P from
 master process
2.While Error E is not stable:
3. Compute a mean Xmyrank of |P|
 the subset P
4. Broadcast the mean Xmyrank Tstartup + Tdata

 to every other slaves
5. Compute distance d(i,j), K|P|
 1≤i≤K,1≤j≤|P| of each vector
 in P such that d(i,j) = || Xi - vj ||
6. Choose vector members K|P|

of the new K subsets according
 to their closest distance
 to Xi, 1≤ i ≤ K

7. Broadcast K subsets computed Tstartup + |P|Tdata

in step 6 to every other slaves
8. Form the new subset P by collecting |P|

vectors that belong toXmyrank that
were sent from other slaves in step 7

9.End
10.Send the subset P to master process Tstartup + |P|Tdata

It is worth noting that broadcasting in this
algorithm does not undermine the overall
performance. In fact, broadcasting is intentionally
used in order to improve the performance of the
algorithm because broadcasting only requires one
setup time for each broadcast while a pair of send()
and receive() requires one setup time each time the
message is sent from one process to another. Since
the setup time for each message passing in MPI is
large, broadcasting helps alleviate this problem
significantly while achieving the same effect as
send() and receive().

2.3 Time/Space Complexity Analysis
We analyze the algorithm into communication
steps and computation steps. Let Tcomm be the time
complexity of communication and Tcomp be the time
complexity of computation. There are 4
communication phases and 3 computation phases
in the algorithm. Each phase can be described as
follows.

Phase 1: Master process sends K equal subsets to K
slaves. Thus,

Tcomm1 = K(Tstartup + N/KTdata)

Phase 2: After each slave process receives a subset
from master process, it computes its mean Xmyrank
from subset P. This step takes

Tcomp1 = |P|

Phase 3: In this phase each slave broadcasts its own
mean to every other slave. Thus,

Tcomm2 = Tstartup + Tdata

Phase 4: Each slave computes Euclidean distance
of each vector in subset P and computes vector
members of the new K subsets. This phase takes

Tcomp2 = 2K|P|

Phase 5: In this phase each slave broadcasts K
subsets to every other slave. Thus,

Tcomm3 = Tstartup + |P|Tdata

Phase 6: Each slave forms the new subset P. Hence,

Tcomp3 = |P|

Phase 7: Each slave sends its subset P to master.
Hence,

Tcomm4 = Tstartup + |P|Tdata
Let Rp be the number of iterations of the while loop
at step 2, TCM be total communication time, and
TCP be total computation time. The total time
complexity can then be computed.

Total time = TCM + TCP

TCM = Tcomm1 + Tcomm2 + Tcomm3 + Tcomm4
 = K(Tstartup+ N/KTdata) +
 Rp(2Tstartup+(|P|+1)Tdata) + Tstartup + |P|Tdata
 = (2Rp+K+1)Tstartup + (N+Rp(|P|+1)+|P|)Tdata
 = O(N+Rp|P|)

TCP = Tcomp1 + Tcomp2 + Tcomp3
 = Rp(2|P|+2K|P|) = O(2RpK|P|)

Total time = O(N+Rp|P|) + O(2RpK|P|)
 = O(2RpK|P|)

Given a uniformly distributed data set of N vectors,
each slave process on one machine requires space
of O(N/K). Hence, the parallel K-means algorithm
has total space complexity O(N).

246

3. Experimental Results
Both versions of K-means algorithms are run with
K = 4 and D = 2. All experimental input data are
uniformly distributed random vectors. Execution
times, the number of iterations, and speedup are
measured as follows:

 N
 D =2

 Iter.
Serial

I ter .
Para

E x e c .
S e c .
Serial

E x e c .
S e c .
Para

Speedup

100K 35 34 127 268 -

200K 22 22 174 328 -

300K 32 31 351 648 -

400K 31 31 472 859 -

500K 27 28 543 1044 -

600K 26 26 946 1749 -
700K 29 31 3683 3322 1.11

800K 36 36 6871 5923 1.16
900K 28 28 13146 6248 2.10

1000K - 25 - 8216 -

From the table, we observe that there is no speedup
from N = 100,000 to N = 600,000 because
communication time is much greater than
computation time. (The MPI library seems to
require a lot of time for initialization and cleanup
stages. In addition, a MPI broadcast is a simulation
on a single bus.) However, from N = 700,000 to N
= 900,000, the computation time starts to dominate
the communication time, resulting in substantial
speedup. The parallel version also allows one to
use larger problem sizes because data are
distributed to several machines. In the experiment
the serial version could not continue when N =
1,000,000 because a single machine did not have
sufficient memory to meet computational
requirement. The parallel version is expected to
gain more speedup as N increases and computation
time starts to dominate communication time.
However, due to our limited memory space, we can
show experimental results of N as large as
1,000,000 vectors (See figure 2).

4. Conclusion
Time complexity of the serial K-means algorithm is
O(RsKN) whereas time complexity of the parallel
K-means algorithm is O(2RpK|P|). Since Rs and Rp
are inherently equivalent and N >> |P| , O(2RpK|P|)
is asymtotically better than O(RsKN).

Suppose N is sufficiently large and data is
uniformly distributed. |P| would be close to N/K.
We can measure performance of the parallel K-
means algorithm against the performance of the

serial algorithm by using speedup S(K), where K is
the number of processors:

S(K) = Execution time of single processor

 Execution time of K processors

 = O(RsKN) = O(RsK2|P|)

 O(2RpK|P|) O(2RpK|P|)

 = O(K/2)

The experiment confirms that when N is
sufficiently large, speedup gain is O(K/2) as
predicted.

In a system with P processors a possible maximum
speedup is P. In our parallel algorithm the number
of processors P is essentially equal to K. Let T be
the efficiency defined as

T = (speedup gain/maximum speedup)100%

Thus, efficiency of parallel K-means algorithm

T = (K/2)/K x 100% = 50%

We can conclude that our parallel K-means
algorithm achieves 50% efficiency of time
complexity. 50% is relatively efficient and cost
effective if we consider that the system used in this
paper is an Ethernet-based message-passing system
and that the K-means clustering algorithm operates
globally by nature. In terms of space complexity,
the parallel K-means algorithm has the same total
complexity O(N) as the complexity of the serial
version. However, the parallel version allows one
to use larger problem sizes because of its
distributive nature. The parallel algorithm can scale
a problem size up to O(K) times the size of the
problem on a single machine.

5. Future Work
The speedup of the proposed algorithm may be
improved even more significantly if we reduce
communication time by grouping two or more
subsets together on one machine. However, this
will likely affect scalability of the algorithm. In
addition, our algorithm needs to use exactly K
machines to operate. Future work could be making
the algorithm more flexible by allowing it to adapt
itself into any number of machines. In [9] the
authors work on overlapping connectivity
Ethernets. Their configuration can be expected to
reduce even more communication time of our
algorithm significantly without having impacts on
scalability. Besides, because most clustering
applications tend to apply to a massive size of data

247

sets, we are interested in finding a method to
partition a data set by K-means algorithm in such a
way that we can temporarily ignore some resulting
partitions in order to work on a few chosen specific
partitions without sacrificing clustering quality. A
motivation is to save some significant working
space and we believe, by means of doing so, we
can find a way to add a new portion of a data set
into the existing partitions without having to rerun
the K-means algorithm from the start. Some
partially-related work has already been studied in
[8]. A by-product of this study is a domain
decomposition for possibly applying Divide-and-
Conquer strategies to parallelize the algorithm for
better speedup.

6. Acknowledgements
We would like to thank the Department of
Electrical Engineering and Computer Science at
Tufts University for allowing us to use computer
facilities in our experiment.

7. References
[1] M. Inaba, N. Katoh, and H.Imai, "Application

of Weighted Voronoi Diagrams and
Randomization to Variance-Based k-
Clustering", Proceedings of the 10th Annual
Symposium on Computational Geometry,
1994. pp. 332

[2] T. Kohonen, "Self-Organizing Maps",
Springer Series in Information Sciences, 1995.

[3] O. Zamir and O. Etzioni, "Web Document
Clustering: A Feasibility Demonstration",
Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 1998,
pp. 46-54

[4] N. K. Ratha, A. K. Jain, and M. J. Chung,
"Clustering using a coarse-grained parallel
Genetic Algorithm: A Preliminary Study",
Proceedings of the 1995 Computer
Architectures for Machine Perception, 1995,
pp. 331-338

[5] S. Guha, R. Rastogi, and K. Shim, "CURE: An
Efficient Clustering Algorithm for Large
Databases", Proceedings of ACM SIGMOD
International Conference on Management of
Data, 1998, pp. 73-84

[6] K. Assiter, K. P. Lentz, A. Couch, and C.
Currey, "Locating Anomalies in Large Data
Sets", Society for Computer Simulation
Military, Government, and Aerospace
Simulation, April 5, 1998, pp. 218-223

[7] C. Chinrungrueng and C. H. Sequin, "Optimal
Adaptive K-Means Algorithm with Dynamic
Adjustment of Learning Rate", IEEE
Transaction on Neural Networks, January
1995, pp. 157-169

[8] P. B. Callahan and S. R. Kosaraju, "A
Decomposition of Multidimensional Point Sets
with Applications to k-Nearest-Neighbors and
n-Body Potential Fields", Proceedings of the
24th Annual ACM Symposium on Theory of
Computing, 1992, pp. 546

[9] B. Wilkinson and M. Allen, "Parallel
Programming 1st Edition", Printice-Hall Inc.,
1999

Sanpawat Kantabutra received an B.A. degree in
accountancy from Chiang Mai University,
Chiangmai, Thailand, and an M.S. degree in
computer engineering from Syracuse University,
Syracuse, New York, USA, and is
currently a Ph.D. student in computer science at
Tufts University, Medford, Massachusetts, USA.
He is also a scholarship recipient of the Ministry of
University Affairs of Thailand and will be on the
faculty of the Computer Science Department at
Chiang Mai University after graduation. His
research interests include parallel computing,
visualization, and theory of computation.

Alva L. Couch received a S.B. degree in
architecture from the Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, and
an M.S. and Ph.D. in mathematics from Tufts
University, Medford, Massachusetts, USA. He is
currently an Associate Professor of computer
science at Tufts University. His research interests
include parallel computing, visualization, and
human interface design.

248

Figure 1. Two-dimensional data are clustered into 4 categories by running K-means algorithm on the data.
Each color represents each category. The centroids are the representatives of each category.

Figure 2. The running time of parallel and serial K-means algorithms are shown in the graph. It can be seen
that the parallel time is less than the serial time when the number of samples is greater than 700,000 and it
is about twice less than the serial time when the number of samples is 900,000.

Four-means Categorization

0
2
4
6
8

10
12

0 5 10 15

X dimension

Y
di

m
en

si
on Category 1

Category 2
Category 3
Category 4
Centroids

Time Comparison

0
2000
4000
6000
8000

10000
12000
14000

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

Number of Samples (Dim=2)

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Serial time
Parallel time

