
NECTEC Technical Journal, Vol. II, No. 9 172

AMATA: Software Architecture and Implementation of High Availability
Support for Beowulf Cluster

Jullawadee Maneesilp, Putchong Uthayopas

Parallel Research Group, CONSYL
Department of Computer Engineering, Faculty of Engineering,

Kasetsart University, Bangkok, Thailand
Phone: (662) 942-8555 Ext. 1416
Email: {g4265082, pu}@ku.ac.th

ABSTRACT -- High-availability support for Beowulf cluster becomes a critical factor in the acceptance
of this platform for mission critical use in enterprise environment. A well defined and extensible HA
software architecture is needed. This paper presents the proposed high-availability software architecture
called AMATA. AMATA architecture clearly defines the software component and interaction for High
Availability support. Many cases such as system software failure, registered user software error, hardware
mal-function, and hardware overload can be detected and handle in a systematic way. Both discovery and
recovery process can be added to provide an intelligent and automatic fault recovery process. Currently, a
prototype implementation has been developed and the results obtained from that implementation have also
been included.

KEY WORDS -- High availability, Beowulf clusters, Fault Tolerance,

1. Introduction and Motivation The organization of this paper is as follows. Section 2 presents

the discussion about some related works. Then, we explain
briefly about our background technology that involves this
work in section 3. Next in section 4 we will discuss about the
design and implementation of AMATA system. Finally, we
give the conclusion in section 5.

Beowulf cluster [1] has been widely used as a scalable
information server or large scientific parallel computer. Many
important software and algorithm have been successful
ported to this platform. Nevertheless, operating large
Beowulf cluster system reliably is still a problem since most
of the commodity off-the-shelf parts are not initially designed
as an integral part of the highly reliable systems. PC
components are less reliability than commercial server
system. This problem is the main obstacle in using the cluster
system for mission critical task in enterprise or industrial
computing. In the commercial Unix marketplace, high
availability [2] is today a key to selling server solution and
virtually every Unix suppliers have their own HA software
solution for customers. However, there is still a need for
powerful open source software support that detects and
recover from fault that allows users of Beowulf systems to
construct a cost effective HA server solution for their
computing needs.

2. Background and Related Work
High-availability (HA) software can be classified into two
main approaches. The first approach is to extend HA service
in kernel level. Although, this approach can be very efficient,
the portable implementation is not possible. Also, it is
difficult to keep pace with the rapid kernel changes that
happened with Linux kernel. Example of such work is
Piranha [3] and Solaris-MC [4]. Solaris-MC is a prototype
operating system for Solaris cluster that provides a single
system image and high-availability by extending operating
system abstraction across the cluster.

In this paper, we present our high availability model and
implementation for Beowulf cluster environment called
AMATA. AMATA architecture define a well structure
software architecture and interaction between software
components for HA support in Beowulf systems. Under the
framework of AMATA, software components can be built to
detect major systems fault and recovery from that fault in a
systematic way. Moreover, user can easily add some
intelligence logic to the system to automate the detection and
recovery processes.

The second approach is to extend the high-availability service
in user space. Not only does this approach has a higher
portability, but also reduce the need to frequently release new
kernel patches. One example is Keep alive project, which is
based on VRRPd [5] implementation of VRRPv2. VRRP is a
standard protocol that helps elect a master server on LAN
when the old master server fail. However, VRRPd only
support the high-availability in case of server fails. No
solutions for user services or system services fail are
provided yet. Linux FailSafe [6] is a community development
effort lead by SuSE and SGI to port SGI IRIS FailSafe
product to Linux. FailSafe provides a full suite of high-
availability capabilities for Linux. These include full N-node

NECTEC Technical Journal, Vol. II, No. 9 173

cluster membership and quorum services application
monitoring and failover-restart capabilities, with a set of GUI
tools for administering and monitoring HA clusters.
Unfortunately, only plug-in of Linux FailSafe is free. Hence,
by delivering a fully available open source cluster, we can
stimulate the wide spread use of Beowulf clusters as a
solution for mission critical IT needs.

3. AMATA Architecture
3.1 AMATA Structure
The proposed AMATA HA architecture is illustrated in
Figure 1. AMATA architecture consists of the following
components.

Figure 1. AMATA Architecture

Cluster Space Layer is an abstract view of cluster systems.
This layer consists of 2 classed of objects, namely, software
objects and hardware objects. Examples of software objects
are tasks, OS services, daemon, and user processes. On the
other hand, hardware object is node, interface card, network,
and hard disk.

Cluster Space Layer is an abstract view of cluster systems.
This layer consists of 2 classed of objects, namely, software
objects and hardware objects. Examples of software objects
are tasks, OS services, daemon, and user processes. On the
other hand, hardware object is node, interface card, network,
and hard disk.

Each object will have an attached component called object
probe that monitors the object performance information and
provides an interface for external object to access these
information. Performance parameter of each object is
represented by a set of counters such as CPU usage, numbers
of packet send/receive and state. Currently, three types of
object probe are available. Firstly, Hardware object probe
is a module that connects with the hardware monitoring
system to receive hardware information such as CPU
utilization, memory usage and network traffic. Secondly,
System services object probe is a module that monitors the
system services on each node. Thirdly, User service object
probe is used to monitor users applications.

Each object will have an attached component called object
probe that monitors the object performance information and
provides an interface for external object to access these
information. Performance parameter of each object is
represented by a set of counters such as CPU usage, numbers
of packet send/receive and state. Currently, three types of
object probe are available. Firstly, Hardware object probe
is a module that connects with the hardware monitoring
system to receive hardware information such as CPU
utilization, memory usage and network traffic. Secondly,
System services object probe is a module that monitors the
system services on each node. Thirdly, User service object
probe is used to monitor users applications.

Fault Discovery Layer is a layer receives the information
from Object Probe, discover the potential fault and notify the
recovery layer using event mechanism. The discovering
process in this layer is based on a set of rules called
Discovery rule. The role of theses rules is to transform a set
of data received from cluster space into a set of answers. The
execution of these rules takes place in part of the code called
discovery module.

Fault Discovery Layer is a layer receives the information
from Object Probe, discover the potential fault and notify the
recovery layer using event mechanism. The discovering
process in this layer is based on a set of rules called
Discovery rule. The role of theses rules is to transform a set
of data received from cluster space into a set of answers. The
execution of these rules takes place in part of the code called
discovery module.

Fault Recovery Layer this layer receive event form fault
discovery layer to generate action to be taken and consists of
recovery rule, recovery module and recovery action driver.

The event that received from Event Service in KSIX[8,9] will
pass to each event handler. We provide default action for
each known event implemented with python. User can also
extend their recovery rule easily by write python script
follow by exist scripts.

Fault Recovery Layer this layer receive event form fault
discovery layer to generate action to be taken and consists of
recovery rule, recovery module and recovery action driver.

The event that received from Event Service in KSIX[8,9] will
pass to each event handler. We provide default action for
each known event implemented with python. User can also
extend their recovery rule easily by write python script
follow by exist scripts.

3.2 Automatic Fault Detection and Recover
Process

3.2 Automatic Fault Detection and Recover
Process

When any fault happened in the system, the process of
automatic fault detection and recovery can be explained as a
flowchart shown in Figure 2.

When any fault happened in the system, the process of
automatic fault detection and recovery can be explained as a
flowchart shown in Figure 2.

Figure 2. Recovery process Figure 2. Recovery process

Object

Discovery
module

object probe

Recovery
module

state
Recovery
Action Driver

Recovery
Rule

state
State

Good/Fail Failure
Notification

Action

Discovery
Rule

Cluster Space(S/W , H/W) Layer

Fault Discovery Layer

Fault Recovery Layer

Recovery
Action

Notification

Detection

In Figure 2, the step started from system object in cluster
space. Each object will be probed periodically to measure its
performance state by discovery module. This state will be
passed to internal discovery module, which transform it to a
set of decision such as good or fail. If the failure is detected,
a failure notification event will be sent to recover module.
Recover module will determine an appropriate course of
action using information embedded in the event and recovery
rule. The action will be send to a code called recovery action
driver which execute series of commands that automatically
solved the problem for the user. In this process, users can
add many complex and intelligent logic to system later to
allow very automatic fix of the problems in cluster system.

In Figure 2, the step started from system object in cluster
space. Each object will be probed periodically to measure its
performance state by discovery module. This state will be
passed to internal discovery module, which transform it to a
set of decision such as good or fail. If the failure is detected,
a failure notification event will be sent to recover module.
Recover module will determine an appropriate course of
action using information embedded in the event and recovery
rule. The action will be send to a code called recovery action
driver which execute series of commands that automatically
solved the problem for the user. In this process, users can
add many complex and intelligent logic to system later to
allow very automatic fix of the problems in cluster system.

3.3 AMATA Implementation 3.3 AMATA Implementation
AMATA is implemented as a set of daemon and script that
execute on each node in the system. The AMATA
implementations rely on many services provided by KSIX [8]
Middleware. After user boot this middleware, KSIX will
automatically load AMATA as one of its services. The
structure of this software system are as shown in Figure 2.

AMATA is implemented as a set of daemon and script that
execute on each node in the system. The AMATA
implementations rely on many services provided by KSIX [8]
Middleware. After user boot this middleware, KSIX will
automatically load AMATA as one of its services. The
structure of this software system are as shown in Figure 2.

NECTEC Technical Journal, Vol. II, No. 9 174

Figure 3. AMATA After KSIX boot

Object probe, discovery module and recovery module will
use KSIX event service to communicate to each other.
Moreover, KSIX feature called automatic restart process has
been employ so that AMATA system will be automatically
restarted when it fail.

One daemon called AMATA console, is used to log the
notification from the fault recovery module. Once the
notification has been accepted, the console daemon will start
some predefined script corresponded to that event. This
feature allows user to hook some logic to report error. For
instance, having a script that send error message using the
phone paging mechanism. User can also control this daemon
by opening a socket connection to it and communicate with a
simple command. The previously mentioned operation can be
summarized as illustrated in Figure 3.

Wait

Exec

Start
Module

Reply

Command

Notify

Module
Result

Figure 4. Console process diagram

4. Experimental Result
The cluster system used for the test consists of 4 Athlon 1
GHz and three Athlon 950 MHz with 512 Mbytes of memory
per machines. These machines run Linux RedHat 6.2. They
connected together with Myrinet Switch and Ethernet switch.

In the experiment, the purpose is to measure the time used to
recovery from fault. In this test, we tested the system
responds time in three cases. In each case, there are three
services that are recovered from the artificial fault. For the
first, case, we measure the recovery time when the system
has no load. For the second test, a system is load with
computation task. This computation load is generated from
Linpack benchmark program at problem size 200. Finally, we
test the system under I/O load condition. This I/O load has

been simulated using the reading and writing to disk file. The
elapse time is then measured starting from the termination
time of the services until the time that system service has
been fully recovered. The results are as reported in Table 2
and the CPU utilization has been reported in Table 3. From
the results, we can see that the recover process has happened
very fast. The implementation consume very low CPU usage
which demonstrate that the implementation is quite efficient.
The increase in I/O and CPU load do effect the recover speed
but the clear result of the impact will need more study.

KSIX
Service

Applications and Tools

Object Probe

KSIX Communication Subsystem

KSIX Kernel KSIX Kernel KSIX Kernel

Discovery Mod.

Recovery Mod.

Object Probe

Discovery Mod.

Recovery Mod.

Object Probe

Discovery Mod.

Recovery Mod.

Hardware Hardware Hardware
Table 1. Recovery Time

 No. of
services

No
Load
(sec)

CPU Load
(sec)

I/O Load
(sec)

1 3.960 12.782 6.840

2 4.061 19.056 17.760

3 4.794 19.458 16.249

Table 2. Percentage CPU of utilization

 No
Load

CPU
Load

I/O Load

%CPU of
Utilization

1.5-3 0.5-1 1.5-2

5. Conclusion
The contribution of this work is mainly the new proposed
concept well define architecture for HA on Linux cluster that
provides a basis for real working implementation. In this
model, we clearly define a modular and scalable, HA model
that is easy to extend. The future work will include a better
and broader implementation of each part, the addition of
more intelligent logic that allows better and more automatic
discover and recover of fault, the prediction of potential
failure, and more study on performance and impact of
external factors to the recovery process.

6. References
[1] T. Stering, D. J. Becker, D. Savarese, J. E. Dorband, U.

A. Ranawake, and C. E. Packer, “ Beowulf: A Parallel
Workstation for Scientific Computation”, In Proceedings
of the International Conference on Parallel Processing
95, 1995.

[2] Harald, M, “Linux High Availability Howto”, Free
software Foundation, Inc., Boston, Massachusetts, USA.
1998.

[3] Kavin Railsback, “Linux Clustering in depth”, Linux
Magazine. August, 2000.

http://srd.yahoo.com/srct/213953/MA/*http://dir.yahoo.com/Regional/U_S__States/Massachusetts/

NECTEC Technical Journal, Vol. II, No. 9 175

[4] Yousef A. Khaladi, Jose M Bernabeu, Vlada Matena,
Ken Sherriff and Moti Thadanai, “Solaris MC: A multi
computer OS”, In the proceeding of USENIX 1996
Annual Technical Conference, San Diego, California,
January 1996.

[5] Jerome Etienne, “High availability: vrrpd, usage,
configuration and security”, In the proceeding of Ottawa
Linux Symposium 2001, Ottawa, Canada, July 24-28,
2001

[6] Lars Marowsky-Bree, “Linux FailSafe –High
Availability for Linux”, In the proceedings of Ottawa
Linux Symposium 2000, Ottawa, Canada, July 19-22,
2000.

[7] Putchong Uthayopas, Jullawadee Maneesilp, Paricha
Ingongnam, “SCMS: An Integrated Cluster Management
Tool for Beowulf Cluster System”, Proceedings of the
International Conference on Parallel and Distributed
Proceeding Techniques and Applications 2000
(PDPTA’2000) , Las Vegas, Nevada , USA , 26-28 June
2000.

[8] Thara Angskun, Putchong Uthayopas and Choopan
Ratanpocha, “KSIX parallel programming environment
for Beowulf Cluster”, Technical Session Cluster
Computing Technologies, Environments and
Applications (CC-TEA), International Conference on
Parallel and Distributed Proceeding Techniques and
Applications 2000 (PDPTA’2000), Las Vegas, Nevada ,
USA, June 2000.

	3.1AMATA Structure
	3.2Automatic Fault Detection and Recover Process
	3.3AMATA Implementation

