
NECTEC Technical Journal, Vol. II, No. 9 182

High Performance Computing for Compressible Turbulent Flow

Ekachai Juntasaro1, Putchong Uthayopas2,
Boonlue Sawatmongkhon1 and Khongthep Boonmee2

1Computational Fluid Dynamics Laboratory (CFD Lab),

School of Mechanical Engineering, Institute of Engineering,
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

Email: junta@ccs.sut.ac.th, Phone: (66 44) 224410 – 2, Fax: (66 44) 224411

2Parallel Research Group (PRG),
Department of Computer Engineering, Faculty of Engineering,

Kasetsart University, Bangkok 10900, Thailand.
Email: pu@ku.ac.th, Phone: (66 2) 9428555 ext 1416, Fax: (66 2) 5796245

ABSTRACT -- The aim of the present research and development work is to develop the computer
program to simulate the steady two-dimensional compressible turbulent flow. The finite volume method is
used to numerically solve the flow governing equations. The Navier-Stokes equations are solved for the
velocity field and the SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation law of
mass. Since all the variables are stored at the center of each control volume, the Rhie-Chow interpolation is
used to avoid the decoupling between the velocity and the pressure. The corrected velocity field is used to
solve the −k and equations. The eddy viscosity, that represents the influence of turbulence on the mean
flow field, can then be calculated from those values of

−ε
k and ε obtained. The energy equation is solved for

the temperature field. The effects of temperature and pressure on the fluid density are taken into account via
the equation of state. The boundary layer on a flat plate is employed as a test case because it is one of the
standard benchmark problems for the validation of CFD software. The sequential-computing solver is first
used to obtain the computed results. It is found that the computed results are in good agreement with the
experimental data at subsonic speed. The parallel-computing solver is also implemented here and tested
against the sequential-computing one. It is found that the parallel program can run faster than the sequential
one up to 2.55 times for the best case. Furthermore, the governing equations are solved on the structured and
body-fitted coordinates so that this computer program can be developed further for the simulation of flow
over or inside any object of complex geometry in the future.
KEY WORDS Compressible Turbulence Flow, High Performance Computing, Parallel Solver

1. Introduction
Fluid flow involves many advanced applications in science,
engineering and technology. Understanding of the flow
behavior is therefore important for the design and
development of scientific and engineering innovations. In
fluid dynamics, the flow behavior is governed by the
continuity equation, the Navier-Stokes equations, the energy
equation and the equation of state. For compressible flow,
where the free-stream Mach number is higher than 0.3, the
effects of temperature variation on fluid properties are so
large that the fluid properties must be treated as variable.

To study turbulent flow, the continuity, Navier-Stokes,
energy and state equations can be solved directly by any
numerical method called Direct Numerical Simulation
(DNS). However, the simulation requires the large number of
grid points, volumes, elements or other form of sub-domains
to capture the characteristics of turbulent flow. Therefore, the
computation requires a supercomputer that have a large

storage to store all essential data and good computing power
to run the program as fast as possible. At present, the
supercomputer can only provide the solution for the turbulent
flow at low Reynolds number with simple geometries. In
other words, the turbulent flow in engineering applications
cannot practically be predicted and studied by this approach.
In general, the turbulent flow is predicted and studied on the
basis of mean quantities. By this way, the continuity, Navier-
Stokes, energy and state equations are essentially time-
averaged using the density-weighted technique. This
technique gives rise to some extra unknown terms which
need to be properly modeled. Turbulence models have been
developed and widely used with success over a wide range of
engineering applications.

The present work is aimed to develop the computer program
for the simulation of steady two-dimensional compressible
turbulent flow using the two-equation turbulence model.
However, the recent emergence of Beowulf cluster
computing technology, which is the use of commodity PC

NECTEC Technical Journal, Vol. II, No. 9 183

and high speed network to build a cost effective
supercomputer, has created a lot of interest around the world.
The potential speed increases by parallelizing the CFD
program to run on this plat form using portable standard
programming such as MPI can be immense. Hence, there is a
need to explore such technique to reduce the computation
time and to increase productivity gained. Part of this work is
performed according to that goal.

where tµ is the eddy viscosity and k is the kinetic energy
of turbulence.

2.3 Two-Equation Turbulence Model of
Launder and Sharma (1974)

ε
ρ=µ µµ

2
t

kfc

2. Governing Equations
where is the model constant, is the damping function,

and

µc µf

ε is the dissipation rate of k . The transport equations
for k and ε are modelled as follows:

Compressible flow is governed by the continuity, Navier-
Stokes, energy and state equations where all the fluid
properties are variable. For turbulent compressible flow,
these governing equations are essentially time-averaged using
the density-weighting technique and the resulting solution is
the mean quantities. This technique gives rise to the extra
unknown terms which cause a closure problem. This problem
can be solved using an appropriate turbulence model. For
steady two-dimensional mean flow, the governing equations
with the turbulence model can be expressed in terms of
tensor notation as follows:

j

i
ij

jk

t

j
j

j x
u~

x
k

x
)ku~(

x ∂
∂

τ+

∂
∂

σ
µ

+µ
∂
∂

=ρ
∂
∂

 Dρ+ερ−

where kσ is the model constant and D is the extra term. For

compressible turbulent flow, is split into two parts: ε sε

(Solenoidal dissipation rate of k) and (Dilatation

dissipation rate of
dε

k). Thus,

2.1 Continuity Equation

0)u~(
x j

j
=ρ

∂
∂

ds ε+ε=ε

where ρ is the fluid density and ju~ is the flow velocity.

Sarkar, Erlebacher, Hussaini & Kreiss (1991) have proposed
that

2.2 Navier-Stokes Equations

i
ijij

j
ij

j x
P)t(

x
)u~u~(

x ∂
∂

−τ+
∂
∂

=ρ
∂
∂

s
2
td M ε=ε

where is the turbulent Mach number defined as tM

where P is the pressure, and ijt and are the laminar-

and turbulent-flow stresses respectively with the following
definitions:

ijτ

2
2
t

a
k2M =

with is the speed of sound. is calculated from the
following equation:

a sε

∂
∂

δ−

∂

∂
+

∂
∂

µ=
k

k
ij

i

j

j

i
ij x

u~

3
2

x
u~

x
u~t

∂
ε∂

σ
µ

+µ
∂
∂

=ερ
∂
∂

ε j

st

j
sj

j xx
)u~(

x

where is the fluid viscosity and is the Kronecker

delta: δ for i and

µ

ij

ijδ

0= j≠ 1ij =δ for i , and j=

δ

∂
∂

+
∂
∂

τ
ε

+ εε ij
k

k

j

i
ij

s
11 x

u
3
1

x
u~

k
fc

 E
x
u~

3
4

k
fc

k

k
s

2
s

22 ρ+
∂
∂

ερ−
ε

ρ− εε
k

3
2

x
u~

3
2

x
u~

x
u~

ij
k

k
ij

i

j

j

i
tij ρδ−

∂
∂

δ−

∂

∂
+

∂
∂

µ=τ

NECTEC Technical Journal, Vol. II, No. 9 184

where e~ is the internal energy (T
~

ce~ v= where T
~

 is the
temperature) and K is the kinetic energy of the mean flow,

i.e.)v~u~(5. 220=K . +

where (σ , ,) are the model constants, (,)

are the damping functions, and E is the extra term.
ε 1cε 2cε 1fε 2fε

For the turbulence model of Launder and Sharma
(1974), the model constants, damping functions and extra
terms are provided as follows:

ε−k

2.5 Equation of State
09.0c =µ , 0.1k =σ , , 3.1=σε 44.1c 1 =ε ,

, 92.1c 2 =ε

() ()kKe~1P t −−ρ−γ=

+

−
=µ 2

t
50
R

1

4.3expf , f 0.11 =ε ,

()2
t2 Rexp3.01f −−=ε ,

where γ is the specific heat ratio.

The fluid properties, µ and k , of compressible flow can
be influenced by the variation of the temperature so that they
must be defined in terms of temperature as the following
relations:

T

 2.6 Sutherland’s Law
2

ix
k2D

∂
∂

ρ
µ

−= , and

2

kj

i
2

t
xx
u~2E

∂∂
∂

ρ
µ

ρ
µ

=

where
µε

ρ
=

2
t

kR .

110T
~

110T
T
T
~ 2/3

+

+

µ=µ ∞

∞
∞

where the subscript ∞ denotes the value at free-stream.

2.4 Energy Equation 2.7 Prandtl Number

T

p
k
c

Pr
µ

=

∂
∂

 µ
+

∂
∂

=ρ
∂
∂

j

T

t

t

v

T

j
Tj

j x
e~

Prc
k

x
)e~u~(

x

 ()[] ()Pu~
x

tu~
x j

j
ijiji

j ∂
∂

−τ+
∂
∂

+ where is the specific heat at constant pressure. pc

∂
∂

σ
µ

+µ
∂

∂
+

jk

t

j x
k

x
 3. Numerical Method

The finite volume method is used to numerically solve the
governing equations which can be written in a general form
as follows:

+

∂
∂

 µ
+

∂
∂

−)kK(
xPrc

k
x jt

t

v

T

j

() φ+

∂

φ∂
Γ

∂
∂

=φρ
∂
∂ S

xx
u

x ii
i

i

where is the thermal conductivity, is the specific

heat at constant volume, Pr is the turbulent Prandtl number

taken as 0.91, and

Tk vc

t

te~ is the total energy which is defined as
~

where φ is the general dependent variable, Γ is the

effective diffusion coefficient, and is the source/sink
term of

φS
φ . To be able to simulate the internal flow with

variable cross-sectional area and the external flow past an
object of complex shape, the general form of the governing
equations is essentially transformed from the physical

kKee~t ++=

NECTEC Technical Journal, Vol. II, No. 9 185

domain (into the computational domain)y,x),(ηξ as the
following equation:

()

η∂
φ∂

η∂
∂

+φU

ξ∂
φ∂

β

−
η∂

∂ vy

2x
+

η∂

∂
η∂

∂y

2x
+

ξ∂

∂
η∂

∂
ξ∂

∂ xy

[]ew)φη
∂
∂

β−
ξ
φ

n

s

ξ∂
φ∂

φ
PS

φφ= AE +φ bS

[]e
e

E)U(,0max
J

A η∆ρ−+

ξ∆
η∆

α
Γ

=φ ,

[]w
w

W)U(,0max
J

A η∆ρ+

ξ∆
η∆

α
Γ

=φ ,

()

β−

ξ∂
φ∂

α
Γ

ξ∂
∂

=φρρ
ξ∂

∂
J

V

[]n
n

N)V(,0max
J

A ξ∆ρ−+

η∆
ξ∆

γ
Γ

=φ ,

[]s
s

S)V(,0max
J

A ξ∆ρ+

η∆
ξ∆

γ
Γ

=φ ,

−

η∂
φ∂

γ
Γ

η∂
∂

+
J

 φ+ JS

where φφφφφ +++= SNWEP AAAAA , and

e

w

η∂
φ∂

β
η

P J
S)J(b

 Γ∆
−η∆ξ∆= φφ

η∂
∂

=
xuU ,

ξ∂
∂

−
ξ∂

∂
=

yuxvV ,

2y

η∂

∂

=α ,

ξ∂
∂

+
η∂

∂
ξ∂

∂
=

yxx
β ,

2y

ξ∂

∂

=γ , and −

η∂
∂

ξ∂
∂

=
yxJ .

n

sJ

ξ∂
φ∂

β
ξΓ∆

− .

The standard SIMPLE algorithm is employed here to satisfy
the conservation law of mass. The continuity equation is not
solved directly with other governing equations. The p ′ -
equation is solved instead to obtain the pressure correction
p ′ and its value is used to correct the values of pressure and
velocities to satisfy the conservation law of mass. The p ′ -
equation can be written in a standard form as follows:

Using the finite volume method, the computational domain is
divided into a number of control volumes. The transformed
equations can be integrated as follows:

[]
e

w

n
s J

)V(U(

η
φ

∂
∂

α
ηΓ∆

=φξ∆ρ+∆ρ

J

β−

η∂
φ∂

γ
ξΓ∆

+

PS
p
SN

p
NW

p
WE

p
EP

p
P mpApApApApA +′+′+′+′=′

where
 φη∆ξ∆+ PS)J(

e

p
E BA

ξ∆
η∆

ρ=
w

p
W BA

ξ∆
η∆

ρ= ,

n

p
N CA

η∆
ξ∆

ρ= ,
s

p
S CA

η∆
ξ∆

ρ= ,

where is the mean value of S at the center P of each

control volume, and (e , ,n ,) are the east, west, north
and south faces of each control volume. The convection
terms are approximated by the first-order upwind
differencing scheme and the diffusion terms are estimated by
the second-order central differencing scheme. Therefore, the
standard form of the finite volume equation can be obtained
as

φ

sw

p
S

p
N

p
W

p
E

p
P AAAAA +++= , and

() ()w*
e

*
P UUm η∆ρ−η∆ρ=

() ()s*
n

* VV ξ∆ρ−ξ∆ρ+ .
 φφφφφ +φ+φ+φ AAAA SNNWWEPP

*U , are calculated from the resulting velocities of the
Navier-Stokes equations, whereas

*V
where

η∂
∂

−
η∂

∂
=

xByBB vu , and
ξ∂

∂
−

ξ∂
∂

=
yCxCC uv

NECTEC Technical Journal, Vol. II, No. 9 186

4. Development of Parallel Computer
Program

where

η∂
∂η∆ξ∆

−=
y

A
B

u
P

u ,
η∂

∂η∆ξ∆
=

x

Av
P

vB ,

ξ∂
∂η∆ξ∆

=
y

A
C

u
P

u , and
ξ∂

∂η∆ξ∆
−=

x

A
C

v
P

v .

Parallel computing is a technique of partitioning long
computation tasks into many sub-tasks that execute
concurrently on multiple computers. Many useful techniques
and algorithms can be found in parallel computing text such
as [14][15]. In general, to partition a sequential program to
run on cluster system, this program has to be analyzed using
the profiling program called “gprof” to discover the most
compute intensive part. Below is some example captured
from the result of gprof profiling.

In general, the standard SIMPLE algorithm is implemented
on the staggered grid system to prevent the decoupling
between the velocity and the pressure. However, the
staggered grid system is technically rather complicated for
programming and requires a large amount of computer
storage. This drawback becomes obvious when the computer
program is developed further for real-world applications. The
collocated grid system is employed in this work so that all the
variables are stored at the center of each control volume. The
problem of velocity-pressure decoupling is solved by the

Rhie-Chow interpolation where (, , ,) are
calculated from the appropriate pressure gradient.

*
eU *

wU *
nV *

sV

% cumulative self self total
 time seconds seconds calls us/call us/call name
 30.81 678.05 678.05 2224080000 0.30 0.30 NavierStokes::Diff(int,
int, double **, char, char)

 28.87 1313.32 635.27 1500 423513.33 661914.16
NavierStokes::EnergyEquation(void)

 11.15 1558.71 245.39 1500 163593.33 359517.83
NavierStokes::Momentum(double **, double **)

 5.63 1682.62 123.91 800 154887.50 326566.29
NavierStokes::epslEquation(void) In the current work, the boundary layer on a flat plate is

chosen as a test case and the implementation of the SIMPLE
algorithm and the Rhie-Chow interpolation must be slightly
changed to suit the flow problem. Physically, the pressure
field of this flow is constant and presumably known
throughout the flow domain. Therefore, the pressure
correction obtained is used to correct the velocities only,
not to correct the pressure, because the pressure itself is
already known and constant. Moreover, the Rhie-Chow
interpolation is simplified to the linear interpolation of (,

, ,) between grid nodes without any effect of
pressure gradient.

p ′

V

*
eU

*
wU *

nV *
s

 4.75 1787.12 104.50 1500 69666.67 456301.14
NavierStokes::SIMPLE(void)

The obtained results show that “Diff” method are the most
using and calling in this program. However, Diff is a
common subroutine that is called from other method. It turns
out that “EnergyEquation” method call “Diff” method more
than other method. Another long computation method is
“Momentum” method, but “Momentum” method is called
from “SIMPLE”. Thus the decision are made to parallelize
the “EnergyEquation” ,“Momentum” and “SIMPLE”
method. But some methods have relation with three methods.
Thus, we must to parallelize them. The main code consists of
two levels of iteration. For the first iteration, program
computes the one equation until variable
DeltaOverallResidual less than 10–12. Within this loop has
eight methods as SIMPLE, UpdateUV, OneEquation,
UpdateMu_tOneEq, EnergyEquation, EquationOfState,
SutherlandLaw and CalThermalConductivity. Every 50
iterations will compute DeltaOverallResidual for using check
condition in iteration. When program finish first iteration will
prepare initialized data for second iteration. Second iteration,
program will compute by use two-equation method until
DeltaOverallResidual less than 10–14. Within loop have five
methods as SIMPLE, UpdateUV, kEquation, epslEquation,
UpdateMu_tTwoEq, EnergyEquation, EquationOfState,
SutherlandLaw and CalThermalConductivity. The pseudo
codes of two main loops are as follows.

The algorithm for the simulation of turbulent compressible
flow can be summarized as follows:

(1) Start the computation with an initial guess of
velocities, pressure correction, turbulence kinetic
energy, dissipation rate of turbulence kinetic energy,
temperature, density and viscosity

(2) Calculate the Navier-Stokes equations for the
velocities

(3) Calculate the -equation for the pressure
correction

p ′

(4) Correct the velocities by the pressure correction
(5) Calculate the k -equation for the turbulence kinetic

energy
(6) Calculate the ε -equation for the dissipation rate of

turbulence kinetic energy
(7) Calculate the energy equation for the total energy,

and hence temperature
 (8) Calculate the density from the equation of state, then

the viscosity from Sutherland’s law, and the thermal
conductivity from the definition of Prandtl number

(9) Repeat from step (2) until the solution converges

NECTEC Technical Journal, Vol. II, No. 9 187

 1 2 n-1 Node

 Figure 1. Data Partitioning

 1 2 n-1 n Node

Figure 2. Overlapped Data of Each Node

In
se
Th
di
sim
Fo
nu
nu
co
nu

 Control signal (start,stop)

Data
do{
 ++iteration;
 Turbulent.SIMPLE();
 Turbulent.UpdateUV();
 Turbulent.OneEquation();
 Turbulent.UpdateMu_tOneEq();
 Turbulent.EnergyEquation();
 Turbulent.EquationOfState();
 Turbulent.SutherlandLaw();
 Turbulent.CalThermalConductivity();
 if(iteration > 0 && iteration%50 == 0){
 Turbulent.CalOverallResidual();
 OverallResidualNew =
Turbulent.GetOverallResidual();

DeltaOverallResidual = fabs(
OverallResidualNew - OverallResidualOld
);

 OverallResidualOld = OverallResidualNew;
 printf("\n%6d OE %.2e ",iteration,
DeltaOverallResidual);
 Turbulent.Display();
 }
}while(DeltaOverallResidual > pow(10.0, -12.0));
printf("\n\tSwitch to Two-Equations");
do{
 ++iteration;
 Turbulent.SIMPLE();
 Turbulent.UpdateUV();
 Turbulent.kEquation();
 Turbulent.epslEquation();
 Turbulent.UpdateMu_tTwoEq();
 Turbulent.EnergyEquation();
 Turbulent.EquationOfState();
 Turbulent.SutherlandLaw();
 Turbulent.CalThermalConductivity();
 if(iteration > 0 && iteration%50 == 0){
 Turbulent.CalOverallResidual();
 OverallResidualNew =
Turbulent.GetOverallResidual();

DeltaOverallResidual = fabs(
OverallResidualNew - OverallResidualOld
);

 OverallResidualOld = OverallResidualNew;
 printf("\n%6d OE %.2e ",iteration,
DeltaOverallResidual);
 Turbulent.Display();

}

 order to parallelize this code, we divide the data into
veral parts using the column base partitioning approach.
e important issue involved in data partitioning is to

stribute the data to all nodes in a balanced fashion. A
ple way of partitioning data can be used effectively here.

r this program, the number of column is divided by
mber of computing node. If there is any column left,
mber of column in each node will be increases by one
lumn. Thus, each node will have the same amount of data
mber to be processes.

 1 2 n-1 n Node

Master Slave Slave Slave

 Figure 3. Communication Model

NECTEC Technical Journal, Vol. II, No. 9 188

5. Results and Discussion 4.1 Communication Model
For our approach, we divide the computing node into two
types: master node and slave node. The master node controls
the processing step of parallel task. It send signal to slave
node to start the computing process. Every 50 iterations,
master node will receive the error data that will be used to
compute the overall error. When overall error is lower than
the minimum value required, master node will send signal to
slave node to stop the computing process. Master node also
computes the result using data that it has. In contrast, the
main function of slave nodes is to compute the data that
belong to them. When they receive the start signal from
master node, slave node will start the computing process.
When they receive stop signal from master node, they will
stop the computing process and send result to master node.

Computations are conducted for laminar and turbulent
compressible flows, and input data are summarized in Table
1.

Table 1. Input Data

Parameter Compressible
Laminar Flow

Compressible
Turbulent Flow

maxξ 151 151

maxη 151 151

LRe 2,000,000 19,500,000

∞M 0.4, 0.6, 0.8 0.824

∞T (K) 300 300

∞P (Pa) 101,325.0 110,995.5

WT (K) 300 Adiabatic Recovery
Temperature

Relaxation
Factor

0.5 0.5

4.2 Exchanging Data
The parallelization of this code has been done using MPI
standard and MPICH [16][17] implementation from Argonne
National Laboratory. For this program, there are many
exchange of boundary data between nodes. This is done using
MPI::COMM_WORLD.Send and
MPI::COMM_WORLD.Receive primitive in MPI. The
example statements excerpt from the code are as shown
below.

where maxξ and maxη are the numbers of grid lines used

on the computational domain, Re is the Reynolds number
based on the length of the flat plate and the free-stream
velocity,

L

∞M is the free-stream Mach number, ∞T is the

free-stream temperature, ∞P is the free-stream pressure,

 is the wall temperature and the relaxation factor is used
to stabilize the numerical scheme used.

WT

5.1 Laminar Compressible Flow
Figure 4 shows the velocity distributions in which the
numerical solutions are compared with the analytical
solutions at three free-stream Mach numbers. The definitions
of the normalized cross-stream distance and stream wise

velocity are ∞∞∞ ρµ u/x/y and ∞u/u
respectively. It is found that the numerical solutions are in
very good agreement with the analytical solutions at all free-
stream Mach numbers considered. For subsonic flow where
the free-stream Mach number is as high as 0.8, the velocity
distribution is not influenced by the Mach number.

I
o
o
t
t
t
m
S
u
v
m
m

void SendRight(int var_id,NavierStokes *Turbulent,double
*buffer,int rank)
{
 long number;

Turbulent->GetArr(var_id,buffer,&number,Turbulent-
>endxCV-6,Turbulent-> endxCV);
MPI::COMM_WORLD.Send(&number,1,MPI::LONG,ran
k+1,NUMTAG+100+rank+1);
MPI::COMM_WORLD.Send(buffer,number,
MPI::DOUBLE,rank+1,NUMTAG+100+rank+1);

}

void ReceiveLeft(int var_id,NavierStokes *Turbulent,double
*buffer,int rank)
{
 MPI::Status status;
 long number;

MPI::COMM_WORLD.Recv(&number,1,MPI::LONG,
rank-1,NUMTAG+100+rank,status);
MPI::COMM_WORLD.Recv(buffer,number,
MPI::DOUBLE,rank-1, NUMTAG+100+rank ,status);
Turbulent->SetArr(var id,buffer,Turbulent->startxCV-
 Physically, the compressibility effect is so little that its effect
does not appear on the velocity distribution of the flow. n this computation, we assume that each computing node is

rdered from left to right. The node that has rank less than
ther will be located on the left side. The first node locates on
he left side of second node and so on. Next step is to identify
he communication pattern by locating the variables that need
o be updated. In the first loop consist of 8 method, every
ethod modify the value of variables. Example of this is the
IMPLE method that computes the value of u, v, pCrtn,
Crtn and vCrtn. Thus, each node must exchange value of u,
, pCrtn, uCrtn and vCrtn. In the second loop, it contains 9
ethods that update the value of variables. Thus, each node
ust exchange this data properly.

Figure 5 illustrates the temperature distributions where the
numerical solutions are compared with the analytical
solutions at three free-stream Mach numbers. The definition
of the normalized temperarure is whereas the
normalized cross-stream distance has the same definition as
in Figure 4. The numerical solutions compared well with the
analytical solutions at all three free-stream Mach numbers.
The difference between the numerical solution and the
analytical solution is larger as the Mach number is higher.
The maximum temperature is higher as the Mach number

∞T/T

NECTEC Technical Journal, Vol. II, No. 9 189

Figure 6(a) Velocity distribution of the turbulent
boundary layer on a flat plate;

Numerical solution of the present work

Figure 6(b) Velocity distribution of the turbulent boundary
layer on a flat plate;

Experimental data of Motallebi (1994)

+

−
= δ−δ

22

2

1*

b4a

a
u~
u~b2

sin
b
u~

u

increases, that is, from about 0.5% at Mach 0.4 to around
2.5% at Mach 0.8.

where

1M
2

1r1
T
~
T
~

a 2

w
−

 −γ

+= δ
δ , and

w

22

T
~
T
~

M
2

1rb δ
δ

−γ
=

with r is the recovery factor (r for turbulent flow)
and the subscript

89.0=
δ denotes the edge of the boundary layer. Figure 4. Velocity distributions of the laminar boundary

layer on a flat plate

Figure 5. Temperature distributions of the
laminar boundary layer on a flat plate

8)/uyln(<µρ<
*

 5.2 Turbulent Compressible Flow

 Figures 6(a) and 6(b) show the velocity distributions of the

turbulent boundary layer on a flat plate at Mach 0.824 where
the numerical solution is compared with the law of the wall
in Figure 6(a) while the experimental data of Motallebi
(1994) is compared with the law of the wall in Figure 6(b). It
is found that both the numerical solution and the Motallebi
data are in good agreement with the law of the wall in a log-
linear region where 5 . In both

figures, u is the transformed velocity, which is defined by
the van Driest transformation as follows:

ww τ

NECTEC Technical Journal, Vol. II, No. 9 190

Figures 7(a) and 7(b) show the comparisons of the numerical
solution and the experimental data of Motallebi (1994) with
the following Maise and McDonald correlation respectively:

Figures 8(a) and 8(b) show the comparisons of the numerical
solution and the experimental data of Motallebi (1994) with
the following Fernholz and Finley correlation respectively:

74.6yln7.4
u

uu
*

**
−

∆
−=

−

τ

δ

δ
π++

δ
−=

−

τ

δ ycos125.1yln5.2
u

uu **

 where
where is the boundary layer thickness and u is the

friction velocity, i.e.

δ τ

ww /u ρτ=τ . It is found that
both the numerical solution and the Motallebi data compare
very well with this correlation.

∫

δ

 −
δ=∆

τ

δ1
0

**
* yd

u
uu

It is found that the numerical solution and the Motallebi data
are reasonably well compared with the Fernholz and Finley
correlation.

Figure 7(a) Velocity distribution of the turbulent
boundary layer on a flat plate;

Numerical solution of the present work

Figure 8(a) Velocity distribution of the
turbulent boundary layer on a flat plate;
Numerical solution of the present work

S

Figure 7(b) Velocity distribution of the turbulent
boundary layer on a flat plate;

ymbol for the experimental data of Motallebi (1994);
Line for the Maise and McDonald correlation

Figure 8(b) Velocity distribution of the turbulent
boundary layer on a flat plate;

Line for the Fernholz and Finley correlation

NECTEC Technical Journal, Vol. II, No. 9 191

5.3 Performance of Parallel Computer Program

To evaluate the performance of the system, parallel program
has been tested on AMATA Beowulf system. This system
consists of:

• 4 Athlon 950 MHz, 256 Mbytes RAM and 20
Gbytes Hard disk

• 4 Athlon 1GHz , 256 Mbytes RAM and 20 Gbytes
Hard disk

• Fast Ethernet Switch Interconnection between nodes

First, the test has been conduct by running sequential
program to measure the runtime. Then, parallel program has
been run on 2, 4, and 8 nodes consequently. The runtime of
parallel code has also been measured. The test has been
repeated several times for several problem sizes. The results
obtained are as depicted in Table 2. Also, the speedup curve
has been plotted and illustrated in Figure 9.

Table 2. Runtime results of the experiment

Test Number Sequential
 No. of Runtime

Grids (seconds) 2 nodes 4 nodes 8 nodes 2 nodes 4 nodes 8nodes
1 151*151 1065 1061.32 1206.02 1021.90 1.00 0.88 1.04
2 201*251 1856.6 1192.39 967.71 1236.52 1.56 1.92 1.50
3 251*151 3088 2142.85 1401.94 1373.27 1.44 2.20 2.25
4 301*151 5403 3230.65 2558.63 2506.05 1.67 2.11 2.16
5 351*151 7208 4645.10 2825.21 3161.77 1.55 2.55 2.28

Parallel Runtime Speedup

Figure 9. Plot of speed up results

From Figure 9, the parallel speed up shows this parallel
algorithm receives the maximum speed when it run on 4
nodes. When number of computing node increase, speed up
doesn’t increase too. Because speed up of 8 computing nodes
almost equal with speed up of 4 computing node. The
maximum speed up obtained is as high as 2.55 times of the
sequential execution speed.

However, as problem size increases, speed up will increase
with it. But speed up doesn’t increase follow to number of

computing nodes. Thus this algorithm will improve
computation/communication ratio for good performance.

6. Conclusions
Both laminar and turbulent compressible flows are simulated
in the present work. The flow is considered at subsonic speed
where the free-stream Mach number is as high as
approximately 0.8. The numerical scheme of the computer
program is validated using the laminar compressible
boundary layer on a flat plate as a test case. It is found that
the computer program is capable of simulating the laminar
compressible boundary layers accurately at three free-stream
Mach number considered. The turbulent compressible
boundary layer on a flat plate at Mach 0.824 is used as a test
case to validate the performance of the two-equation
turbulence model of Launder and Sharma. It is found that the
computer program can accurately simulate the turbulent
compressible boundary layer at subsonic speed. The parallel
implementation exhibits some moderate speedup. So, one of
the most important future work is to analyze the performance
of this parallel code and find out how to increases the
speedup of this application.

7. Acknowledgements
Part of the present work of the first and third authors are
financially supported from SUT Research Fund 55/2542.
This support is greatly appreciated. We also would like to
thank Dr.Varangrat Juntasaro for sharing her knowledge on
the physics of compressible turbulent flow, and the modeling
and numerical techniques. Some of the equipment used for
performance assessment, especially the Athlon based cluster
system, are supported by AMD Far East Inc. Part of the
support is also from KURDI SRU Grant.

Parallel Speedup

0
0.5

1
1.5

2
2.5

3

151*151 201*251 251*151 301*151 351*151
Problem Size

Sp
ee

du
p

2 nodes
4 nodes
8 nodes

References

[1] Fernholz, H.H., and Finley, P.J. (1980) “A Critical
Commentary on Mean Flow Data for Two-Dimensional
Compressible Turbulent Boundary Layers,”
AGARDograph 253.

[2] Gibson, M.M., Jones, W.P., and Whitelaw, J.H. (1992)
“Turbulence Models for Computational Fluid
Dynamics,” Course Lecture Notes, 18-20 November
1992, Department of Mechanical Engineering, Imperial
College of Science, Technology and Medicine.

[3] Gosman, A.D., and Issa, R.I. (1992) “Computational
Fluid Dynamics,” Post Experience Course, 16-18
November 1992, Department of Mechanical
Engineering, Imperial College of Science, Technology
and Medicine.

[4] Gropp, W., Lusk, E., and Thakur, R. (1999) “Using
MPI: Portable Parallel Programming with the Message-
Passing Interface, 2nd edition”, MIT Press.

[5] Gropp, W., Lusk, E., and Thakur, R., (1999) “Using
MPI-2: Advanced Features of the Message-Passing
Interface”, MIT Press.

NECTEC Technical Journal, Vol. II, No. 9 192

[6] Hinze, J.O. (1975) “Turbulence,” 2nd edition, McGraw-
Hill.

[7] Hutchings, B., and Iannuzzelli, R. (1987) “Benchmark
Problems for Fluid Dynamics Codes,” Mechanical
Engineering, June, pp. 54-58.

[8] Juntasaro, E., and Sawatmongkhon, B. (1999)
“Compressible Laminar Flow towards a Numerical
Wind Tunnel,” Proceedings of the 13th National
Mechanical Engineering Conference, 2-3 December
1999, Royal Cliff Beach Resort Hotel, South Pattaya,
Cholburi, Thailand, Vol. 1, pp. 132-137.

[9] Juntasaro, E., Uthayopas, P., Sawatmongkhon, B., and
Boonmee, K. (2001) “High Performance Computing for
Steady Two-Dimensional Turbulent Flow,” Proceeding
of the 5th Annual National Symposium on
Computational Science and Engineering, 18-20 June
2001, Sofitel Central Plaza, Bangkok, Thailand, pp.
126-140.

[10] Karki, K.C., and Patankar, S.V. (1989) “Pressure Based
Calculation Procedure for Viscous Flows at All Speeds
in Arbitrary Configurations,” AIAA Journal, Vol. 27,
No. 9, pp. 1167-1174.

[11] Kumar, V., Grama, A., Gupta, A., and Karypis, G.
(1994) “Introduction Parallel Computing Design and
Analysis of Algorithms”, Benjamin/Cummings.

[12] Lang, N.J., and Shih, T.H. (1991) “A Critical
Comparison of Two-Equation Turbulence Models,”
NASA Technical Memorandum 105237.

[13] Launder, B.E., and Sharma, B.I. (1974) “Application of
the Energy-Dissipation Model of Turbulence to the
Calculation of a Flow near a Spinning Disk,” Letters in
Heat and Mass Transfer, Vol. 1, pp. 131-138.

[14] Maise, G., and McDonald, H. (1968) “Mixing Length
and Kinematic Eddy Viscosity in a Compressible
Boundary Layer,” AIAA Journal, Vol. 6, No. 1, pp. 73-
80.

[15] Motallebi, F. (1994) “Mean Flow Study of Two-
Dimensional Subsonic Turbulent Boundary Layers,”
AIAA Journal, Vol. 32, No. 11, pp. 2153-2161.

[16] Motallebi, F. (1996) “Reynolds Number Effects on the
Prediction of Mean Flow Data for Adiabatic 2-D
Compressible Boundary Layers,” Aeronautical Journal,
Vol. 100, No. 992, pp. 53-59.

[17] Patankar, S.V. (1980) “Numerical Heat Transfer and
Fluid Flow,” Hemisphere.

[18] Patel, V.C., Rodi, W., and Scheuerer, G. (1985)
“Turbulence Models for Near-Wall and Low Reynolds
Number Flows: A Review,” AIAA Journal, Vol. 23,
No. 9, pp. 1308-1319.

[19] Rhie, C.M., and Chow, W.L. (1983) “Numerical Study
of the Turbulent Flow past an Airfoil with Trailing
Edge Separation,” AIAA Journal, Vol. 21, No. 11, pp.
1525-1532.

[20] Sarkar, S., Erlebacher, G., Hussaini, M.Y., and Kreiss,
H.O. (1991) “The Analysis and Modelling of
Dilatational Terms in Compressible Turbulence,”
Journal of Fluid Mechanics, Vol. 227, pp. 473-493.

[21] Schlichting, H. (1979) “Boundary-Layer Theory,” 7th
edition, McGraw-Hill.

[22] Varangrat, S. (1999) “Computational Study of
Compressible Flow in an S-Shaped Duct,” Ph.D.
Thesis, Department of Mechanical Engineering,
Imperial College, University of London, U.K.

[23] Versteeg, H.K., and Malalasekera, W. (1995) “An
Introduction to Computational Fluid Dynamics: The
Finite Volume Method,” Longman Scientific &
Technical.

[24] White, F.M. (1991) “Viscous Fluid Flow,” 2nd edition,
McGraw-Hill.

[25] Wilcox, D.C. (1993) “Turbulence Modeling,” DCW
Industries.

[26] Wilkinson, B., and Allen, M. (1999) “Parallel
Programming”, Prentice-Hall.

	Introduction
	Governing Equations
	Continuity Equation
	Navier-Stokes Equations
	Two-Equation Turbulence Model of Launder and Sharma (1974)
	Energy Equation
	Equation of State
	Sutherland’s Law
	Prandtl Number

	Numerical Method
	Development of Parallel Computer Program
	Results and Discussion
	
	Parameter
	Compressible Laminar Flow
	Compressible Turbulent Flow

	Laminar Compressible Flow
	Figures 6(a) and 6(b) show the velocity distributions of the turbulent boundary layer on a flat plate at Mach 0.824 where the numerical solution is compared with the law of the wall in Figure 6(a) while the experimental data of Motallebi (1994) i

	Conclusions
	Acknowledgements
	References

