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ABSTRACT -- The aim of the present research and development work is to develop the computer 
program to simulate the steady two-dimensional compressible turbulent flow. The finite volume method is 
used to numerically solve the flow governing equations. The Navier-Stokes equations are solved for the 
velocity field and the SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation law of 
mass. Since all the variables are stored at the center of each control volume, the Rhie-Chow interpolation is 
used to avoid the decoupling between the velocity and the pressure. The corrected velocity field is used to 
solve the −k  and equations. The eddy viscosity, that represents the influence of turbulence on the mean 
flow field, can then be calculated from those values of 

−ε
k  and ε  obtained. The energy equation is solved for 

the temperature field. The effects of temperature and pressure on the fluid density are taken into account via 
the equation of state. The boundary layer on a flat plate is employed as a test case because it is one of the 
standard benchmark problems for the validation of CFD software. The sequential-computing solver is first 
used to obtain the computed results. It is found that the computed results are in good agreement with the 
experimental data at subsonic speed. The parallel-computing solver is also implemented here and tested 
against the sequential-computing one. It is found that the parallel program can run faster than the sequential 
one up to 2.55 times for the best case. Furthermore, the governing equations are solved on the structured and 
body-fitted coordinates so that this computer program can be developed further for the simulation of flow 
over or inside any object of complex geometry in the future. 
KEY WORDS Compressible Turbulence Flow, High Performance Computing, Parallel Solver 
 
1. Introduction 
Fluid flow involves many advanced applications in science, 
engineering and technology. Understanding of the flow 
behavior is therefore important for the design and 
development of scientific and engineering innovations. In 
fluid dynamics, the flow behavior is governed by the 
continuity equation, the Navier-Stokes equations, the energy 
equation and the equation of state. For compressible flow, 
where the free-stream Mach number is higher than 0.3, the 
effects of temperature variation on fluid properties are so 
large that the fluid properties must be treated as variable. 

To study turbulent flow, the continuity, Navier-Stokes, 
energy and state equations can be solved directly by any 
numerical method called Direct Numerical Simulation 
(DNS). However, the simulation requires the large number of 
grid points, volumes, elements or other form of sub-domains 
to capture the characteristics of turbulent flow. Therefore, the 
computation requires a supercomputer that have a large 

storage to store all essential data and good computing power 
to run the program as fast as possible. At present, the 
supercomputer can only provide the solution for the turbulent 
flow at low Reynolds number with simple geometries. In 
other words, the turbulent flow in engineering applications 
cannot practically be predicted and studied by this approach. 
In general, the turbulent flow is predicted and studied on the 
basis of mean quantities. By this way, the continuity, Navier-
Stokes, energy and state equations are essentially time-
averaged using the density-weighted technique. This 
technique gives rise to some extra unknown terms which 
need to be properly modeled. Turbulence models have been 
developed and widely used with success over a wide range of 
engineering applications. 

The present work is aimed to develop the computer program 
for the simulation of steady two-dimensional compressible 
turbulent flow using the two-equation turbulence model. 
However, the recent emergence of Beowulf cluster 
computing technology, which is the use of commodity PC 
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and high speed network to build a cost effective 
supercomputer, has created a lot of interest around the world. 
The potential speed increases by parallelizing the CFD 
program to run on this plat form using portable standard 
programming such as MPI can be immense. Hence, there is a 
need to explore such technique to reduce the computation 
time and to increase productivity gained. Part of this work is 
performed according to that goal.  

where tµ  is the eddy viscosity and k  is the kinetic energy 
of turbulence. 
 

2.3 Two-Equation Turbulence Model of    
Launder and Sharma (1974) 
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2. Governing Equations 
where  is the model constant,  is the damping function, 

and 

µc µf

ε  is the dissipation rate of k . The transport equations 
for k  and ε  are modelled as follows: 

Compressible flow is governed by the continuity, Navier-
Stokes, energy and state equations where all the fluid 
properties are variable. For turbulent compressible flow, 
these governing equations are essentially time-averaged using 
the density-weighting technique and the resulting solution is 
the mean quantities. This technique gives rise to the extra 
unknown terms which cause a closure problem. This problem 
can be solved using an appropriate turbulence model. For 
steady two-dimensional mean flow, the governing equations 
with the turbulence model can be expressed in terms of 
tensor notation as follows: 
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where kσ  is the model constant and D is the extra term. For 

compressible turbulent flow,  is split into two parts: ε sε  

(Solenoidal dissipation rate of k ) and  (Dilatation 

dissipation rate of 
dε

k ). Thus, 

2.1 Continuity Equation 
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where ρ  is the fluid density and ju~  is the flow velocity. 

Sarkar, Erlebacher, Hussaini & Kreiss (1991) have proposed 
that 

2.2 Navier-Stokes Equations 
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where  is the turbulent Mach number defined as tM

where P  is the pressure, and ijt  and  are the laminar- 

and turbulent-flow stresses respectively with the following 
definitions: 
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with  is the speed of sound.  is calculated from the 
following equation: 
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where  is the fluid viscosity and  is the Kronecker 
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where e~  is the internal energy ( T
~

ce~ v=  where T
~

 is the 
temperature) and K is the kinetic energy of the mean flow, 

i.e. )v~u~(5. 220=K . +

where ( σ , , ) are the model constants, ( , ) 

are the damping functions, and E  is the extra term. 
ε 1cε 2cε 1fε 2fε

For the  turbulence model of Launder and Sharma 
(1974), the model constants, damping functions and extra 
terms are provided as follows: 

ε−k
 

2.5 Equation of State  
09.0c =µ , 0.1k =σ , , 3.1=σε 44.1c 1 =ε , 
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where γ  is the specific heat ratio. 

The fluid properties, µ  and k , of compressible flow can 
be influenced by the variation of the temperature so that they 
must be defined in terms of temperature as the following 
relations: 
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 2.6 Sutherland’s Law 
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where the subscript ∞  denotes the value at free-stream. 
 

2.4 Energy Equation 2.7 Prandtl Number 
 

T

p
k
c

Pr
µ

=      

   











∂
∂








 µ
+

∂
∂

=ρ
∂
∂

j

T

t

t

v

T

j
Tj

j x
e~

Prc
k

x
)e~u~(

x
 

  ( )[ ] ( )Pu~
x

tu~
x j

j
ijiji

j ∂
∂

−τ+
∂
∂

+  where  is the specific heat at constant pressure. pc
 













∂
∂









σ
µ

+µ
∂

∂
+

jk

t

j x
k

x
 3. Numerical Method 

The finite volume method is used to numerically solve the 
governing equations which can be written in a general form 
as follows: 
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where  is the thermal conductivity,  is the specific 

heat at constant volume, Pr  is the turbulent Prandtl number 

taken as 0.91, and 

Tk vc

t

te~  is the total energy which is defined as 
~

where φ  is the general dependent variable, Γ  is the 

effective diffusion coefficient, and  is the source/sink 
term of 

φS
φ . To be able to simulate the internal flow with 

variable cross-sectional area and the external flow past an 
object of complex shape, the general form of the governing 
equations is essentially transformed from the physical 
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domain (  into the computational domain )y,x ),( ηξ  as the 
following equation: 
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The standard SIMPLE algorithm is employed here to satisfy 
the conservation law of mass. The continuity equation is not 
solved directly with other governing equations. The p ′ -
equation is solved instead to obtain the pressure correction 
p ′  and its value is used to correct the values of pressure and 
velocities to satisfy the conservation law of mass. The p ′ -
equation can be written in a standard form as follows: 

 
Using the finite volume method, the computational domain is 
divided into a number of control volumes. The transformed 
equations can be integrated as follows: 
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where  is the mean value of S  at the center P of each 

control volume, and ( e , ,n , ) are the east, west, north 
and south faces of each control volume. The convection 
terms are approximated by the first-order upwind 
differencing scheme and the diffusion terms are estimated by 
the second-order central differencing scheme. Therefore, the 
standard form of the finite volume equation can be obtained 
as 
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Navier-Stokes equations, whereas 
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4. Development of Parallel Computer 
Program 

where 
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Parallel computing is a technique of partitioning long 
computation tasks into many sub-tasks that execute 
concurrently on multiple computers. Many useful techniques 
and algorithms can be found in parallel computing text such 
as [14][15]. In general, to partition a sequential program to 
run on cluster system, this program has to be analyzed using 
the profiling program called “gprof” to discover the most 
compute intensive part. Below is some example captured 
from the result of gprof profiling. 

 
In general, the standard SIMPLE algorithm is implemented 
on the staggered grid system to prevent the decoupling 
between the velocity and the pressure. However, the 
staggered grid system is technically rather complicated for 
programming and requires a large amount of computer 
storage. This drawback becomes obvious when the computer 
program is developed further for real-world applications. The 
collocated grid system is employed in this work so that all the 
variables are stored at the center of each control volume. The 
problem of velocity-pressure decoupling is solved by the 

Rhie-Chow interpolation where ( , , , ) are 
calculated from the appropriate pressure gradient. 

*
eU *

wU *
nV *

sV

%   cumulative   self              self     total            
 time   seconds   seconds    calls  us/call  us/call  name     
 30.81    678.05   678.05 2224080000     0.30     0.30  NavierStokes::Diff(int, 
int, double **, char, char) 

 28.87   1313.32   635.27     1500 423513.33 661914.16  
NavierStokes::EnergyEquation(void) 

 11.15   1558.71   245.39     1500 163593.33 359517.83  
NavierStokes::Momentum(double **, double **) 

  5.63   1682.62   123.91      800 154887.50 326566.29  
NavierStokes::epslEquation(void) In the current work, the boundary layer on a flat plate is 

chosen as a test case and the implementation of the SIMPLE 
algorithm and the Rhie-Chow interpolation must be slightly 
changed to suit the flow problem. Physically, the pressure 
field of this flow is constant and presumably known 
throughout the flow domain. Therefore, the pressure 
correction  obtained is used to correct the velocities only, 
not to correct the pressure, because the pressure itself is 
already known and constant. Moreover, the Rhie-Chow 
interpolation is simplified to the linear interpolation of ( , 

, , ) between grid nodes without any effect of 
pressure gradient. 

p ′

V

*
eU

*
wU *

nV *
s

 4.75   1787.12   104.50     1500 69666.67 456301.14  
NavierStokes::SIMPLE(void) 

 
The obtained results show that “Diff” method are the most 
using and calling in this program.  However, Diff is a 
common subroutine that is called from other method. It turns 
out that “EnergyEquation” method call “Diff” method more 
than other method. Another long computation method is 
“Momentum” method, but “Momentum” method is called 
from “SIMPLE”. Thus the decision are made to parallelize 
the “EnergyEquation” ,“Momentum” and “SIMPLE” 
method. But some methods have relation with three methods. 
Thus, we must to parallelize them. The main code consists of 
two levels of iteration. For the first iteration, program 
computes the one equation until variable 
DeltaOverallResidual less than   10–12. Within this loop has 
eight methods as SIMPLE, UpdateUV, OneEquation, 
UpdateMu_tOneEq, EnergyEquation, EquationOfState, 
SutherlandLaw and CalThermalConductivity. Every 50 
iterations will compute DeltaOverallResidual for using check 
condition in iteration. When program finish first iteration will 
prepare initialized data for second iteration. Second iteration, 
program will compute by use two-equation method until 
DeltaOverallResidual less than 10–14. Within loop have five 
methods as SIMPLE, UpdateUV, kEquation, epslEquation, 
UpdateMu_tTwoEq, EnergyEquation, EquationOfState, 
SutherlandLaw and CalThermalConductivity. The pseudo 
codes of two main loops are as follows. 

The algorithm for the simulation of turbulent compressible 
flow can be summarized as follows: 

(1) Start the computation with an initial guess of 
velocities, pressure correction, turbulence kinetic 
energy, dissipation rate of turbulence kinetic energy, 
temperature, density and viscosity 

(2) Calculate the Navier-Stokes equations for the 
velocities 

(3) Calculate the -equation for the pressure 
correction 

p ′

(4) Correct the velocities by the pressure correction 
(5) Calculate the k -equation for the turbulence kinetic 

energy 
(6) Calculate the ε -equation for the dissipation rate of 

turbulence kinetic energy 
(7) Calculate the energy equation for the total energy, 

and hence temperature  
 (8) Calculate the density from the equation of state, then 

the viscosity from Sutherland’s law, and the thermal 
conductivity from the definition of Prandtl number 

 

(9) Repeat from step (2) until the solution converges 
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 1               2       n-1 Node

  Figure 1. Data Partitioning 

   1                      2                     n-1               n Node

Figure 2. Overlapped Data of Each Node 
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 Control signal (start,stop)

Data
do{ 
 ++iteration; 
    Turbulent.SIMPLE(); 
    Turbulent.UpdateUV(); 
 Turbulent.OneEquation(); 
 Turbulent.UpdateMu_tOneEq(); 
 Turbulent.EnergyEquation(); 
 Turbulent.EquationOfState(); 
 Turbulent.SutherlandLaw(); 
 Turbulent.CalThermalConductivity(); 
 if( iteration > 0  &&  iteration%50 == 0 ){ 
  Turbulent.CalOverallResidual(); 
  OverallResidualNew = 
Turbulent.GetOverallResidual(); 

DeltaOverallResidual = fabs( 
OverallResidualNew - OverallResidualOld 
); 

  OverallResidualOld = OverallResidualNew;
  printf("\n%6d  OE %.2e ",iteration, 
DeltaOverallResidual); 
  Turbulent.Display(); 
 } 
}while( DeltaOverallResidual > pow(10.0, -12.0) ); 
printf("\n\tSwitch to Two-Equations"); 
do{ 
 ++iteration; 
 Turbulent.SIMPLE(); 
 Turbulent.UpdateUV(); 
 Turbulent.kEquation(); 
 Turbulent.epslEquation(); 
 Turbulent.UpdateMu_tTwoEq(); 
 Turbulent.EnergyEquation(); 
 Turbulent.EquationOfState(); 
 Turbulent.SutherlandLaw(); 
 Turbulent.CalThermalConductivity(); 
 if( iteration > 0  &&  iteration%50 == 0 ){ 
  Turbulent.CalOverallResidual(); 
  OverallResidualNew = 
Turbulent.GetOverallResidual(); 

DeltaOverallResidual = fabs( 
OverallResidualNew - OverallResidualOld 
); 

  OverallResidualOld = OverallResidualNew;
  printf("\n%6d  OE %.2e ",iteration, 
DeltaOverallResidual); 
  Turbulent.Display(); 

}

 order to parallelize this code, we divide the data into 
veral parts using the column base partitioning approach. 
e important issue involved in data partitioning is to 

stribute the data to all nodes in a balanced fashion. A 
ple way of partitioning data can be used effectively here. 

r this program, the number of column is divided by 
mber of computing node. If there is any column left, 
mber of column in each node will be increases by one 
lumn. Thus, each node will have the same amount of data 
mber to be processes.  

 
          1                          2           n-1        n Node
 

Master                     Slave    Slave     Slave 
 
 Figure 3. Communication Model 
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5. Results and Discussion 4.1 Communication Model 
For our approach, we divide the computing node into two 
types: master node and slave node. The master node controls 
the processing step of parallel task. It send signal to slave 
node to start the computing process. Every 50 iterations, 
master node will receive the error data that will be used to 
compute the overall error. When overall error is lower than 
the minimum value required, master node will send signal to 
slave node to stop the computing process.  Master node also 
computes the result using data that it has.  In contrast, the 
main function of slave nodes is to compute the data that 
belong to them. When they receive the start signal from 
master node, slave node will start the computing process. 
When they receive stop signal from master node, they will 
stop the computing process and send result to master node.  

Computations are conducted for laminar and turbulent 
compressible flows, and input data are summarized in Table 
1.  
 

Table 1. Input Data 
 

Parameter Compressible 
Laminar Flow 

Compressible 
Turbulent Flow 

maxξ  151 151 

maxη  151 151 

LRe  2,000,000 19,500,000 

∞M  0.4, 0.6, 0.8 0.824 

∞T  (K) 300 300 

∞P  (Pa) 101,325.0 110,995.5 

WT  (K) 300 Adiabatic Recovery 
Temperature 

Relaxation 
Factor 

0.5 0.5 

4.2 Exchanging Data 
The parallelization of this code has been done using MPI 
standard and MPICH [16][17] implementation from Argonne 
National Laboratory. For this program, there are many 
exchange of boundary data between nodes. This is done using 
MPI::COMM_WORLD.Send and 
MPI::COMM_WORLD.Receive primitive in MPI. The 
example statements excerpt from the code are as shown 
below. 

 
where maxξ  and maxη  are the numbers of grid lines used 

on the computational domain, Re  is the Reynolds number 
based on the length of the flat plate and the free-stream 
velocity, 

L

∞M  is the free-stream Mach number, ∞T  is the 

free-stream temperature, ∞P  is the free-stream pressure, 

 is the wall temperature and the relaxation factor is used 
to stabilize the numerical scheme used. 

WT

 

5.1 Laminar Compressible Flow 
Figure 4 shows the velocity distributions in which the 
numerical solutions are compared with the analytical 
solutions at three free-stream Mach numbers. The definitions 
of the normalized cross-stream distance and stream wise 

velocity are ∞∞∞ ρµ u/x/y  and ∞u/u  
respectively. It is found that the numerical solutions are in 
very good agreement with the analytical solutions at all free-
stream Mach numbers considered. For subsonic flow where 
the free-stream Mach number is as high as 0.8, the velocity 
distribution is not influenced by the Mach number. 
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void SendRight(int var_id,NavierStokes *Turbulent,double 
*buffer,int rank) 
{ 
    long number; 

Turbulent->GetArr(var_id,buffer,&number,Turbulent-
>endxCV-6,Turbulent-> endxCV); 
MPI::COMM_WORLD.Send(&number,1,MPI::LONG,ran
k+1,NUMTAG+100+rank+1); 
MPI::COMM_WORLD.Send(buffer,number, 
MPI::DOUBLE,rank+1,NUMTAG+100+rank+1); 

} 
 
void ReceiveLeft(int var_id,NavierStokes *Turbulent,double 
*buffer,int rank) 
{ 
 MPI::Status status; 
 long number; 

MPI::COMM_WORLD.Recv(&number,1,MPI::LONG, 
rank-1,NUMTAG+100+rank,status); 
MPI::COMM_WORLD.Recv(buffer,number, 
MPI::DOUBLE,rank-1, NUMTAG+100+rank ,status); 
Turbulent->SetArr(var id,buffer,Turbulent->startxCV-
 Physically, the compressibility effect is so little that its effect 
does not appear on the velocity distribution of the flow. n this computation, we assume that each computing node is 

rdered from left to right. The node that has rank less than 
ther will be located on the left side. The first node locates on 
he left side of second node and so on. Next step is to identify 
he communication pattern by locating the variables that need 
o be updated. In the first loop consist of 8 method, every 
ethod modify the value of variables. Example of this is the 
IMPLE method that computes the value of u, v, pCrtn, 
Crtn and vCrtn. Thus, each node must exchange value of u, 
, pCrtn, uCrtn and vCrtn. In the second loop, it contains 9 
ethods that update the value of variables. Thus, each node 
ust exchange this data properly. 

Figure 5 illustrates the temperature distributions where the 
numerical solutions are compared with the analytical 
solutions at three free-stream Mach numbers. The definition 
of the normalized temperarure is  whereas the 
normalized cross-stream distance has the same definition as 
in Figure 4. The numerical solutions compared well with the 
analytical solutions at all three free-stream Mach numbers. 
The difference between the numerical solution and the 
analytical solution is larger as the Mach number is higher. 
The maximum temperature is higher as the Mach number 

∞T/T
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Figure 6(a) Velocity distribution of the turbulent 
boundary layer on a flat plate; 

Numerical solution of the present work 

Figure 6(b) Velocity distribution of the turbulent boundary 
layer on a flat plate;  

Experimental data of Motallebi (1994) 
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increases, that is, from about 0.5% at Mach 0.4 to around 
2.5% at Mach 0.8. 
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with r  is the recovery factor ( r  for turbulent flow) 
and the subscript 

89.0=
δ  denotes the edge of the boundary layer.  Figure 4. Velocity distributions of the laminar boundary 

layer on a flat plate  

 

Figure 5. Temperature distributions of the 
laminar boundary layer on a flat plate 
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 5.2 Turbulent Compressible Flow  
 
 Figures 6(a) and 6(b) show the velocity distributions of the 

turbulent boundary layer on a flat plate at Mach 0.824 where 
the numerical solution is compared with the law of the wall 
in Figure 6(a) while the experimental data of Motallebi 
(1994) is compared with the law of the wall in Figure 6(b). It 
is found that both the numerical solution and the Motallebi 
data are in good agreement with the law of the wall in a log-
linear region where 5 . In both 

figures, u  is the transformed velocity, which is defined by 
the van Driest transformation as follows: 

ww τ
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Figures 7(a) and 7(b) show the comparisons of the numerical 
solution and the experimental data of Motallebi (1994) with 
the following Maise and McDonald correlation respectively: 

Figures 8(a) and 8(b) show the comparisons of the numerical 
solution and the experimental data of Motallebi (1994) with 
the following Fernholz and Finley correlation respectively: 
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  where 
where  is the boundary layer thickness and u  is the 

friction velocity, i.e. 

δ τ

ww /u ρτ=τ . It is found that 
both the numerical solution and the Motallebi data compare 
very well with this correlation. 

∫ 







δ











 −
δ=∆

τ

δ1
0

**
* yd

u
uu

  

 
It is found that the numerical solution and the Motallebi data 
are reasonably well compared with the Fernholz and Finley 
correlation. 

Figure 7(a) Velocity distribution of the turbulent 
boundary layer on a flat plate; 

Numerical solution of the present work 
 

Figure 8(a) Velocity distribution of the 
turbulent boundary layer on a flat plate; 
Numerical solution of the present work  
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Figure 7(b) Velocity distribution of the turbulent 
boundary layer on a flat plate; 

ymbol for the experimental data of Motallebi (1994);
Line for the Maise and McDonald correlation 
 
 
 
 
 
 

Figure 8(b) Velocity distribution of the turbulent 
boundary layer on a flat plate; 

Line for the Fernholz and Finley correlation 
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5.3 Performance of Parallel Computer Program 

To evaluate the performance of the system, parallel program 
has been tested on AMATA Beowulf system. This system 
consists of: 

• 4  Athlon 950 MHz, 256 Mbytes RAM and  20 
Gbytes Hard disk 

• 4 Athlon 1GHz , 256 Mbytes RAM and 20 Gbytes 
Hard disk 

• Fast Ethernet Switch Interconnection between nodes 

First, the test has been conduct by running sequential 
program to measure the runtime. Then, parallel program has 
been run on 2, 4, and 8 nodes consequently. The runtime of 
parallel code has also been measured. The test has been 
repeated several times for several problem sizes. The results 
obtained are as depicted in Table 2. Also, the speedup curve 
has been plotted and illustrated in Figure 9. 
 

Table 2. Runtime results of the experiment 
 

Test Number Sequential
 No. of Runtime

Grids (seconds) 2 nodes 4 nodes 8 nodes 2 nodes 4 nodes 8nodes
1 151*151 1065 1061.32 1206.02 1021.90 1.00 0.88 1.04
2 201*251 1856.6 1192.39 967.71 1236.52 1.56 1.92 1.50
3 251*151 3088 2142.85 1401.94 1373.27 1.44 2.20 2.25
4 301*151 5403 3230.65 2558.63 2506.05 1.67 2.11 2.16
5 351*151 7208 4645.10 2825.21 3161.77 1.55 2.55 2.28

Parallel Runtime Speedup

 

Figure 9. Plot of speed up results 
 
 
 

From Figure 9, the parallel speed up shows this parallel 
algorithm receives the maximum speed when it run on 4 
nodes. When number of computing node increase, speed up 
doesn’t increase too. Because speed up of 8 computing nodes 
almost equal with speed up of 4 computing node. The 
maximum speed up obtained is as high as 2.55 times of the 
sequential execution speed. 

However, as problem size increases, speed up will increase 
with it. But speed up doesn’t increase follow to number of 

computing nodes. Thus this algorithm will improve 
computation/communication ratio for good performance. 
 
6. Conclusions 
Both laminar and turbulent compressible flows are simulated 
in the present work. The flow is considered at subsonic speed 
where the free-stream Mach number is as high as 
approximately 0.8. The numerical scheme of the computer 
program is validated using the laminar compressible 
boundary layer on a flat plate as a test case. It is found that 
the computer program is capable of simulating the laminar 
compressible boundary layers accurately at three free-stream 
Mach number considered. The turbulent compressible 
boundary layer on a flat plate at Mach 0.824 is used as a test 
case to validate the performance of the two-equation 
turbulence model of Launder and Sharma. It is found that the 
computer program can accurately simulate the turbulent 
compressible boundary layer at subsonic speed. The parallel 
implementation exhibits some moderate speedup. So, one of 
the most important future work is to analyze the performance 
of this parallel code and find out how to increases the 
speedup of this application. 
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