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ABSTRACT -- In August 2000 the High Performance Computing Research Group (AHPC) of the Ateneo 
de Manila University built an 8-node Beowulf- class computer designed for computational science applications. 
As more researchers and students in the University are trained in cluster computing, the need for building a 
better cluster arises. This year the AHPC proposes to build a large-scale graph-based symmetric cluster. The 
proposed high performance computing system will be a symmetric cluster with a single-switch latency and f lat 
networking neighborhood topology. The proposed design also features minimized cost and maximized 
bandwidth. This presentation will deal with mathematical and computational aspects of graph-based clusters, 
and design considerations for a large-scale symmetric cluster with a single-switch latency. 
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1. INTRODUCTION 
Cluster computing is becoming an accepted form of 
supercomputing. In universities, government institutions and 
commercial companies, there is a growth in the cluster 
installation base. In the international scene, there is a race to 
build the biggest and the fastest clusters. 

The popularity of cluster computing is growing among 
scientific computing and research communities. It is also 
expanding in the commercial sector, and a large number of very 
large scale clusters are being deployed. However, according to 
Amdahl's Law, the speedup of a system is limited by the 
speedup of a single component in such a system. This is true in 
the case of cluster computing. It is not simply a case of adding 
compute nodes to the cluster to make it perform better. Other 
factors, such as interconnection network, will cause a 
performance bottleneck. 

To improve the performance of a supercomputing cluster, it is 
important to eliminate bottlenecks. Limitations in network 
switch sizes, latencies and other network devices do not make 

this task easier. The use of alternative neighborhood networks 
can help answer these network limitations. 

In August 2000 the High Performance Computing Research 
Group (AHPC) of the Ateneo de Manila University built an 8-
node Beowulf- class computer designed for computational 
science applications[10,11]. As more researchers and students 
in the University are trained in cluster computing, the need for 
building a better cluster arises. This year the AHPC proposes to 
build a large-scale graph-based symmetric cluster. The 
proposed high performance computing system will be a 
symmetric cluster with a single-switch latency and flat 
networking neighborhood topology. The proposed design also 
features minimized cost and maximized bandwidth. This 
presentation will deal with mathematical and computational 
aspects of graph-based clusters, and design considerations for a 
large-scale symmetric cluster with a single-switch latency. 
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2. THE NETWORK PROBLEM The next sections discuss the theoretical basis of our proposed 
topology. 

Parallel computation is typically composed of tasks that are 
parallel and some tasks that are not. Parallel tasks are those 
tasks that can be accomplished simultaneously with or without 
active communication. Serial tasks are those tasks that have to 
be completed one after another in a proper sequence. Serial 
tasks are usually irreducible and are treated as fixed 
computational overhead and at times it can expand. Parallel 
tasks have ideal completion times like 1/N where N is the 
number of parallel tasks undertaken at the same time[5]. 
Parallel task, however, require a communications overhead 
between tasks. All of these are made formal in Equation 2 
referred to as Amdahl's Law and quantitatively corrected in 
books in parallel computation[5]. 

3.1 A GraphBased -Cluster 
Let  G  be a graph with vertices 0, 1, 2, . . . , t - 1 and let  G0 , 
G1 , . . . , Gm - 1 be  m  copies of  G. Then the vertices of   Gi  are 
labelled as  i, m + i, 2m + i, . . . , tm - m + i and the order of   
Gi is t. (Note that order of a graph means the number of 
vertices of a graph.) 

Consider a cluster whose compute nodes are the vertices of the 
m  copies of  G. Let us partition the  mt  compute nodes of the 
cluster into  t  subnets such that each subnet  Ck  consists of the 
nodes  km, km + 1, km + 2, . . .  , km + m - 1. We connect the 
nodes of the cluster to  t  network switches S0 , S1 , . . . , Sk - 1 
using the node-to-switch connection procedure given below.  

 
Procedure NTS-1  (1) 

 Let   u   be a compute node belonging to subnet  Ck  . Then 
 

  
 NTS-1. connect node  u  to switch   Sk . (2) 
 NTS-2. connect node  u  to  Sk 1  , Sk 2 , . . . , Sk 1−r ,  if   k   is 

adjacent to  
This law strictly limits the amount of speedup that can be 
attained from a paralleled program. However, this equation 
does not consider some other factors such as  Tis  or the average 
serial time which includes time delays due to Inter-process 
communications, setup, initialization and other. Another factor 
is Tip which is the average parallel time spend by each 
processor performing tasks like initialization, setup and even 
idle time. With these in mind the more realistic form of 
Amdahl's Law is shown in Equation 2.2. 

 vertice  k1 , k2  , . . . , kr – 1   in  G. 
 
Let us denote the cluster based on  m  copies of a graph  G of 
order t and connected using the node-to-switch connection 
procedure by  CG (m, R, t)  where  R  is the set   {r0 + 1, r1 + 1, 
. . . , rt - 1 + 1} and each   rk   denotes the degree of vertex      k 
in  G. If   r0 = r1 = . . . , rt - 1   G  is called a regular graph. An 
example of a regular graph is the circulant graph G(t; ± s0 ,          
± s1 , . . . , ± sr) such that the vertices are labelled as 0, 1, . . . ,   
t - 1 and each vertex   v   is adjacent to vertices   v ± s0 , v ± s1  , 
. . . , v ± sd  where addition is taken under modulo  t. If  t  is 

even, then  
2
t  ≡  

2
t  (mod t). Hence, if  sd  = 

2
t  when t is 

even, the regularity of the circulant graph is odd. Consider the 
following example.  

It can be seen that the speedup of the entire system is severely 
limited by this law. The communications overhead while is part 
of the computation can severely limit the speedup gained. Thus, 
a large number of cluster nodes cannot be justified if the 
network will simply reduce its benefits. 

3. AGILA NETWORK DESIGN – 
NTS-1 accounts for 1 network switch for each node, while 
NTS-2 accounts for  r - 1  switches for each node.  Hence, each 
node in the cluster is attached to r  network switches. 
Therefore, there are   r   NICs installed in each node. 

    A GRAPH BASED CLUSTER 
We are proposing to enlarge the Athlon Beowulf cluster of the 
Ateneo High Performance Computing Group known as AGILA 
from the present set-up of 15 nodes to 256 nodes. Using a 4-
way motherboard, our new cluster system will have a total of 
1024 processors. 

 

The topology of the cluster system we are proposing is based 
on 16 copies of a circulant graph of order 16 with jump sizes 

1, 4, 7, 8. The vertices of the graph are labelled 0, 1, 
2,…, 15 such that vertex  u  is adjacent to the vertex  u 
± ± ±

± 1,      
u ± 4 , u 7,  u + 8 (the sum is taken under modulo  t). ±

Theorem 1    Let  G  be a graph of order  t  and regularity       
r - 1. Suppose that the cluster CG (m, R,  t) uses s-port switches. 

Then  m ≤  





r
s  , i.e ., each subnet can have at most 





r
s   

compute nodes. 
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Proof. The total available number of ports is  st. If  m  copies of 
the regular graph  G  are to be used, then the cluster uses  mrt 
ports. 

Hence,  mrt ≤  st  mr ≤  s  m ≤  ⇔ ⇔
r
s . 

Since  m  is a positive integer,  m  ≤ 





r
s . 

Example 1 

In Fig. 1, the cluster is based on 6 copies of  G(8; ± 1, 4). This 
is a 3-regular circulant graph and has 8 vertices. Since NTS-1 
connects a node to one switch and NTS-2 connects the node to 
three other switches, each node in the cluster needs 4 1-port 
NICs or 1 4-port NICs. If the cluster uses 24-port switches, then 
it must have  4

24

×

 = 6 copies of the base graph. Hence, the 
cluster has 8 6 = 48 compute nodes partitioned into 8 
components C0, C1, . . . , C7  where each component  Ck  has the 
six nodes km, km + 1, km + (m - 1). The total number of 
installed NICs is 4× 48 = 192. The cluster needs 8 network 
switches labelled as  S0, S1, . . .  ,S7. 

A node symmetric cluster or network has no distinguishable 
node. The “view” of the rest of the network cluster is the same 
from any node. Rings, fully connected networks, and 
hypercubes are all node symmetric network. This property is 
similar to that of the vertex-transitive graph. Hence, a cluster  C 
is node-symmetric (or vertex-transitive) if there exists an 
automorphism φ  from the cluster's node set  V (C) onto itself. 
If a cluster is node-symmetric we simply call it as a symmetric 
cluster. 
 
Theorem 2 If G is a vertex-transitive graph, then the cluster  
CG (m, R,  t) is symmetric. 
 
Proof. Let G be a vertex-transitive graph of order t. Define a 
mapping ϕ  from the vertex set of CG (m, R,  t)) onto itself by 
ϕ (km + i) = φ (k)m + i  where φ  is an automorphism of of the 
vertex set of  G  onto itself. Clearly, ϕ  is an automorphism 
from the vertex set of CG (m, R,  t) onto itself. Therefore, the 
cluster CG (m, R,  t) generated by the vertex-transitive graph G 
is symmetric. 

 
Theorem 3 If  G  has diameter 1 or 2, then every pair of nodes 
in CG (m, R,  t) has a common switch. Therefore, CG (m, R,  t) 
has the  FNN  topology. 
 
Proof. Let  u = k1m + i1  and  v = k2m + i2  be two distinct 
compute nodes in the CG (m, R,  t). If  k1 = k2, then the two 
nodes belong to Ck. Hence, they are joined by switch Sk. 
Suppose that  k1  k≠ 2. If  k1  and  k2 are adjacent in  G, then  u 
and  v are joined by two switches. If  k1  and  k2 are not adjacent 
(only when diameter is not 1), then they have a common 

neighbor since G has diameter 2. Hence, u  and  v are joined by 
a switch. Therefore, CG (m, R,  t) has the FNN topology. 
 
 

Figure 1. A cluster based on 6 copies of  G(8; ± 1, 4) cluster 
CG (m, R,  t) 

 
4. A PROPOSED GIGANTIC CLUSTER   

DESIGN 
In this section, we shall show a design of a symmetric FNN 
cluster with about 1000 processors. The base graph is a 
circulant graph with 16 vertices and jump sizes ± 1, ± 4, ± 7,8. 
See the graph in Fig. 2. 

Since the base graph has t = 16 vertices, the cluster needs 16 
switches. Also, the base graph is 7 regular. It follows that each 
compute node needs two 4-port NICs or  r = 8.  On a 128-port 
100 Mbps Fast-Ethernet switches, the number of compute 
nodes per subnet is at most  8

128  = 16. Hence, m = 16. Each 
subnet corresponds to a network switch. Thus, the CG(16, 8, 16) 
cluster has 16× 16 = 256 compute nodes. Using 4-way 
motherboards, the CG (16, 8, 16) cluster can have at most 
256× 4 = 1,024 processors. 

4.1 Bisection Bandwidth of the GraphBased 
Cluster 

A communication link between two nodes in a cluster using the 
FNN topology is the connection from one node to a switch and 
the connection from the switch to the other node. The number 
of communication links between two distinct nodes is defined 
as the pairwise bandwidth of the given pair. 
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Figure 2. Circulant G (16; 1, 4, 7, 8)  ± ± ±
 
The minimum number of communication links that must be 
removed to partition a network into two equal halves is defined 
as the bisection bandwidth of G is denoted by BBW (G). This 
type of partition is known as the bisection of the G. 

The bisection bandwidth of a tree is one, since any partition 
cuts across only one communication links. The bisection 
bandwidth of a hypercube of order 2d (number of nodes) is      
2d - 1, since at least 2d - 1 communication links must cross any 
partition of a hypercube into two subcubes. The bisection 
bandwidth of a complete graph of order  p  is p2 / 4, if  p is 
even, or (p2 - 1) / 4, if  p  is odd. 

Switches are the de-facto standard component for a cluster 
system. Switches are used to connect different nodes in such a 
way that each node is given a guaranteed bandwidth. A switch 
Sk with the nodes in component Ck determines a subnet of 
nodes of the graph-based cluster. Switch  Sk  is associated with 
vertex k in G. If two vertices  k1  and  k2  are adjacent in  G, 
then the subnets determined by  Sk 1  and  Sk 2 are also 
“adjacent”, because they share the same nodes in Ck 1  and Ck 2

2

 . 
Hence, If the edge that is incident to  k1  and  k2  is removed, 
then the communication links between the nodes in Ck 1 and Sk  
and between the nodes in Ck 2  and  Sk 1  are removed. There are 
2m such links. Hence, we have the following theorem. 

Figure 3. A Bisection of G (16; ± 1, ± 4, ± 7,8) 
 
 
Theorem 5 Suppose that  t  is the total number of switches 
used, s be the total number ports used per switch and the 
cluster has  n  compute nodes. Then the average pairwise links 
between two compute nodes is 
 
 
 

 
Theorem 4 The bisection bandwidth of CG (m, r, t) is         
2m  BBW (G). ×

 
 
 
  
 The bisection width of Circulant G (16; 1, 4, 7, 8) requires 

at least 16 edges to partition the graph into two equal halves. 
See Fig. 3. 

± ± ±
Proof. Since the cluster has t available switches with s available 
ports per switch, it follows that the total possible links of the 

cluster is 







2

s
×  t. The cluster has  n  compute nodes. Hence, Hence the (bidirectional) bisection bandwidth of CG (16, 8, 16) 

is 2× 16 16 200 Mbps = 102.4 Gbps edges. × ×
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=  3.98431373  or an average bidirectional  
 
 

pairwise bandwidth of  796.862746  Mbps. 

5. CONCLUSION 
In this paper we have discussed the theoretical basis of our 
proposed topology for building graph-based symmetric clusters 
with single switch latency. 
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