
NECTEC Technical Journal, Vol. II, No. 9 200

The Development of Myrinet Driver for DP Low Latency Message Passing
System

Theewara Vorakosit, Putchong Uthayopas
Parallel Research Group, CONSYL

Department of Computer Engineering,
Faculty of Engineering, Kasetsart University

Bangkok, Thailand.
Email: g4465018@ku.ac.th, pu@ku.ac.th

ABSTRACT -- Low-latency communication system is crucial for the performance of parallel application
on Beowulf cluster systems since its reduced the overhead of important operation such as barrier
synchronization. This paper presents our work on the design and development of Myrinet driver for DP, low
latency communication system in cluster environment. This driver allows user to exploit DP capability on
fast message transmission on Myrinet network.

This driver is implemented as a loadable kernel module, which can be load or unload without modifying or
recompiling the OS kernel. The performance has been measure and clearly shows the good improvement
over traditional UDP transmission.

KEYWORDS -- Cluster System, Communication Latency Reduction, Myrinet, Linux Driver

1. Introduction and Related work The design of driver aims at achieving a low latency for short
message and high bandwidth for large message. To achieve
our goal, the complexity of original Myrinet driver from
Myricom [6] has been reduced and other functionality require
for the driver such as registering to DP, source route
configuration, memory map utility are added. The developing
Myrinet driver is still a challenging work due to the
programming complexity in kernel level. Hence, this is also
the motivation for the selection of GNU/Linux system as an
implementation platform since GNU/Linux is a free software
and all kernel source code is available.

High bandwidth, low latency network communication
subsystem is essential for cluster system since many
important synchronization depends on the fast transmission
of short massages. By reducing the latency involved, parallel
message passing applications can gain much higher
performance on cluster system. Traditional Generic
communication protocol such as TCP/IP is too complex for
cluster systems since they are not designed to be a “local”
protocol in such system. Hence, many communication
subsystems are developed to be use in cluster systems. The
examples of such works are Directed Point[7], Active
Message[2], Fast Message[3], U-Net[4] and Virtual Interface
Architecture[5].

2. Background
Directed Point (DP) is a communication subsystem for
parallel computing that comes from the research project at
University of Hong Kong. The DP communication subsystem
employs a high-level abstraction to express the interprocess
communication in a cluster. In DP model, each node in the
cluster is assigned a logical identity called Node ID (NID).
Each endpoint of the directed edge is labeled with a unique
Directed Pont ID (DPID). Each program can use an
association of 3 tuples {local DPID, peer Node ID, peer
DPID} to identify a communication channel.

DP is one of the implementation that seems to be very
interesting in many aspects. This includes a well-protected
kernel level implementation, fast and low overhead system
call, well define and low overhead architecture. But the
problem is that current DP implementation only supports
FastEthernet, share memory, and ATM.

One of the most used network switch technology is Myrinet
from Myricom. Myrinet is a robust, scalable, and high
performance high bandwidth network technology. Myrinet
has many useful features to use in cluster such as high
bandwidth, ANSI standard, and scalability. Myrinet is fully
programmable at the NIC level. This facts is a motivation for
the development of a Myrinet driver for DP system on
Beowulf cluster so that users can fully exploit the
performance of Myrinet-base Beowulf cluster with DP
technology.

The DP subsystem consists of three layers, namely,
application programming interface (API) layer, service layer,
and network interface layer. The DP API layer provides a
way to use DP system. The DP service layer is the core of the
DP subsystem that provides services for message delivery.
This layer is responsible for the delivering of messages from
user space to network hardware level. It also helps deliver

NECTEC Technical Journal, Vol. II, No. 9 201

the incoming packets to the target DP end point. The DP
network interface layer provides an interface for DP service
layer to interact with the network hardware. Figure 1
illustrates the DP system architecture.

Figure 2. The block diagram of Myrinet NIC

IOOR

MDR

TBP

RX Descriptor
List

TX Descriptor
List

CAT
NART

Interrupt
Handler

API
TBP

Incoming
DM

Outgoing
DM

Network Interface

 Service
Layer

Network
Interface
Layer

Hardware

API Layer

Buffer

Buffer

Buffer

Outgoing
Messages

Buffer

Buffer

Buffer

TX FIFO
Queue

RX FIFO
Queue

RX Control Logic TX Control Logic

3. Implementation of Myrinet Driver for
DP

Myrinet driver is designed to work s a network layer of DP.
The driver consists of 2 parts: the LANai control program
and Linux Host Driver. LANai control program is a program
that execute on LANai processor on Myrinet board. The
Linux host driver is a driver execute in Linux Kernel. The
Linux host driver and LANai control program communicate
using hardware level share memory.

Figure 1. The architecture of DP communication subsystem
In LANai, the memory available is a 2 MB SRAM
(expandable to 8 MB). The LANai memory is divided into 7
sections as follows:

Myrinet is a switching technology that is widely used to
interconnection for high-performance cluster systems. Some
features of Myrinet are:

1. Myrinet control program region for Myrinet control
program (MCP). The size of this program in our driver is
about 256 kB. At the end of this region, it is a base stack
pointer. We have to move base stack pointer to this
address in order to use the rest of LANai memory. This
region if from 0 to 0x3ffff.

• Full-duplex 2+2 Gigabit/second links, switch ports,
and interface ports.

• Flow control, error control, and "heartbeat"
continuity monitoring on every link.

• Low-latency, cut-through, crossbar switches, with
monitoring for high-availability applications. 2. Blank region that acts as a guard between MCP and other

regions. This region is ranging from address 0x40000 to
0x4ffff. • Scalable to tens of thousands of hosts, with network-

bisection data rates in Terabits per second, and can
also provide alternative communication paths
between hosts.

3. Command region. This region allows host and LANai to
write and read the commands and status codes such as
sending command, busy flags and so more. This region
ranges from address 0x50000 to 0x5ffff. • Host interfaces has build-in microcontroller called

LANai that execute a control program to interact
directly with host processes ("OS bypass") for low-
latency communication, and directly with the
network to send, receive, and buffer packets.

• Support any topology and protocol.

• Conform to American National Standard
ANSI/VITA 26-1998

4. DMA control block region. Myrinet NIC contains a
DMA controller. The controller uses chains of control
blocks stored in LANai memory to initiate DMA-
mastering operations. There are 2 chains, one for sending
and another one for receiving. This region is located at
the address 0x60000 to 0x6ffff.

5. Source route table region. This region is used to maintain
the source route table. System administrator has to
configure source route table for each node statically.
When sending a packet, LANai will search for a source
route for target host from DP header. This region is from
0x70000 to 0x7ffff. In this version, the driver supports 6
bytes source route. That means cluster can span to
maximum of 6 switches or a few hundred nodes. This
table can contain up to 21845 hosts.

Myrinet card has a memory space of 16 MB. LANai memory
is between address 0 to 0x800000. The block diagram of
Myrinet card is shown in Figure 2.

6. Send buffer. This region is used to store the outgoing
packet to be sent. Only one packet can be stored in this
region at a time. MCP supports up to 65536 bytes of

NECTEC Technical Journal, Vol. II, No. 9 202

data. However, the current version of DP supports only
1500 bytes. This region is ranging from address 0x9000
to 0x9ffff.

3. Driver triggers DMA transfer of incoming packet
into host memory.

4. Driver calls DP service layer to dispatch incoming
packet. 7. Receive buffer. This region is used to store the incoming

packet. This region ranges from address 0x10000 to
0x10ffff. • Memory-mapped function provides the mapping of all

16MB of LANai memory space into a part of the user
space. To use this function, user have to create a
character device file with predefine major number and
minor number to be 0. The function is used to debug
Myrinet.

For the driver to work, the LANai controller code has been
developed using C language. This C code is the compiled to
LANai machine code using cross compiler available from
Myricom. The LANai is programmed logic is a state
machine. Figure 3 shows the flowchart that explains the
LANai controller code logic. • Source route configuration function provides a way to set

source route for each node. Source route is required for
the sending of packets to other node. In order to keep the
overhead low, the source route table are configure
statically. Source route configuration is registered in a
file /proc/net/myri_route. User can configure source
route using cat command to /proc/net/myri_route. This
file can also be read.

Starting
receive
engine

Incomming
packet

Outgoing
packet

Forward
message
to MDR
engine

Restarting
receive
engine

Send it

Initilization

Yes

No

Yes

No

The driver itself is implemented as a loadable kernel module.
Hence, the driver can be loaded or unloaded from memory
without modifying or recompiling the kernel. In order to
support the listed functionally, driver composes of 7 major
modules, which are:

• Initialization module – this module responsible for
locating Myrinet NIC from a system using PCI function
called in Linux and gets the pointer to configuration
space if a Myrinet NIC is located. Next, the memory in
Myrinet NIC is mapped as a part of kernel memory, so
kernel can directly access the card. Finally, the routine
will initialize Myrinet hardware, clear, and check all
content of LANai memory.

• Loading module – this module load MCP program to
LANai memory. MCP code is programmed in C
language, which is compiled by LANai cross compiler to
LANai machine code. This machine code is then
converted into C array definition in order to simplify the
loading task. LANai executable file can be converted to
C array using “gendat” utility from Myricom and then
included into a driver source code. Loading task is
simplified to be only the copy of array content to LANai
memory.

Figure 3. Flow chart for LANai Send Receive Operation

For the Linux host driver, the driver consists of 4 main
functions: sending function, receiving function, memory-
mapped function, and source route configuration and
registration function. The operations of each function can be
briefly summarized as follows:
• Sending function responsible for the sending of outgoing

packet. This module is called directly by DP service
layer. The transmission of a message works as follow:

• Sending module. This module is a major part of this
driver. Sending module is called by DP service region to
send a packet to another node.

1. Driver checks whether LANai is free.

2. Driver creates DP header in kernel memory.

3. Copy the header and data to LANai memory. • Interrupt service routine. This routine is another major
part of the driver. This routine is called when LANai
interrupts host. LANai will interrupt host only when an
incoming packet is a DP packet. This routine also help
copy the data from LANai memory to DP service layer
buffer.

4. Wait until the send operation in LANai completed.

• Receiving function receives the incoming packet. LANai
will receive all incoming packet at all time. If there is an
incoming packet, the routine works the following way:

1. LANai checks that there is an incoming packet and
whether the incoming packet is a DP packet or not.

• Character device and /proc Routine. This routine
provides a convenient way to directly access the NIC.
User can directly access a whole NIC as though the NIC
is in user space using mmap system call as well as
generic read/write system call. /proc provide a

2. LANai set the size of incoming packet in DMA
control block and raises the interrupt to host driver.

NECTEC Technical Journal, Vol. II, No. 9 203

Table 1. Comparison of UDP over Fast Ethernet, Myrinet
and DP over Myrinet

convenient way to configure source route for that node.
This module will create /proc/net/myri_route.

Message

 size

UDP

Fast

Ethernet

UDP

Myrinet

DP

Myrinet

GM

Myrinet

1 52.3 62.8 26.25 15.99

2 47.8 47.8 26.75 15.98

4 48.5 47.8 27 16.02

8 48.0 47.0 27 16.02

16 46.8 47.0 27 16.02

32 48.5 48.0 27.25 15.96

64 51.8 49.0 28.25 16.78

128 53.5 52.5 29.75 19.98

256 58.0 61.8 36.5 30.18

512 68.5 68.3 40.25 38.42

1024 88.3 88.5 51.5 55.16

• Post-initialization module. The main function of this
module is to register components such as interrupt
service routine to a kernel. After finish the registration
process, this routine will start the LANai operation.

• Clean up module. The driver can be unloaded from
kernel using the rmmod command. The rmmod command
will call clean up module to free all resources that are
allocated during the work. Hence, this module has to free
all resources before the driver are unloaded from kernel.
The resource cleaned are things such as memory,
interrupt line, /proc and so on.

4. Performance
The driver has been tested using 2 nodes from a Beowulf
cluster called AMATA. These two system has the following
setup: 1 GHz Athlon processor with 512 MB RAM connect
through Myrinet switch, Linux Kernel 2.2.16, and Myrinet
card model: M2M-PCI64A-2-50973 with LANai version of
7.2 and 2 MB board memory.

For the new driver, the graph in Figure 4 clearly shows a
much lower latency compared to usual UDP over both
Myrinet and Fast Ethernet. When compared with GM driver
from Myricom, for small message size, GM driver is a little
bit faster (about 10 Microsecond) that our DP driver. The DP
driver has slightly lower latency when message size is larger
than 512 bytes. The time different may cause by many
factors. One of the most important factor is how fine tune the
code has been done. The logical step to further fine tune the
code is to profile them in more detail and look at the code
tuning at assembly language level.

A ping-pong program has been developed to measure the
round-trip time for message size ranging from 8 bytes to
1024 bytes. The comparison has been made between the
newly developed driver and the performance of code with
UDP over FastEthernet, UDP over Myrinet, and GM driver
over myrinet. The results are as shown in Table 1 and the
graph are plotted as illustrated in Figure 4. The time given in
Table 1 is in the unit of Microsecond.

Latency Comparison

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200
Message size (bytes)

L
at

en
cy

 ti
m

e
(u

se
c)

UDP/FastEthernet

UDP/Myrinet

DP/Myrinet

GM/Myrinet

Figure 4. Performance comparison between Myrinet over DP and UDP

NECTEC Technical Journal, Vol. II, No. 9 204

5. Conclusion and Future Work
In this paper, an implementation of Myrinet driver for DP
system has been discussed with the experimental results. The
techniques used in developing the driver have been
explained. From the experimental results, the newly
developed driver shown a satisfactory reduction of message
latency although, there seems to be slight problem that slow
down the Myrinet hardware transmission.

In the future, this driver will be used as a communication
subsystem under a planned Pico-MPI that will be developed
later. This implementation aims to explore the full optimize
of message passing implementation from user space level to
kernel level which has a high potential to generate fast and
compact experimental MPI implementation.

6. Acknowledgement
This research has been partly supported by KU research and
Development Institute under SRU grant. Most of the
equipment used in the developed is sponsored by AMD Far
East Inc.

7. References
[1] Chun-Ming Lee, Anthony Tam, and Cho-Li Wang,

Directed Point: An Efficient Communication Subsystem
for Cluster Computing, The University of Hong Kong,
1997

[2] T. von Eichken, D. E. Culler, S. C. goldstein and K. E.
Schauser, Active Message: a Mechanism for Integrated
Communication and Computation,” The 19th Int’l on
Computer Architecture, 1992

[3] S. Palin, M. Lauria and A. Chien, “High Performance
Messages (FM) for Myrinet,” Supercomputing, 1995

[4] Thorsten von Eicken, Anindya Basu, Vineet Buch, and
Werner Vogels, U-Net: A user-level network interface
for parallel and distributed computing. In Proceedings of
the 15th ACM Symposium on Operating Systems
Principles, December 1995. Available from

 http://www.cs.cornell.edu/Info/Projects/ATM/sosp.ps

[5] D. Dunning and G. Regnier. The virtual interface
architecture. InHot Interconnects V, pages 47--58, 1997

[6] Myricom Inc, M2M PCI64A Product Specification,
http://www.myri.com/myrinet/PCI64/m2m-pci64a.html,
July 2000

[7] Myricom Inc, PCI64 Programmer's Documentation,

http://www.myri.com/myrinet/PCI64/
programming.html, July 2000

http://www.myri.com/myrinet/PCI64/m2m-pci64a.html
http://www.myri.com/myrinet/PCI64/ programming.html
http://www.myri.com/myrinet/PCI64/ programming.html

	ABSTRACT -- Low-latency communication system is crucial for the performance of parallel application on Beowulf cluster systems since its reduced the overhead of important operation such as barrier synchronization. This paper presents our work on the desi
	Introduction and Related work
	Background
	Implementation of Myrinet Driver for DP
	Performance
	Conclusion and Future Work
	Acknowledgement
	References

