Total Sliding Mode Position Control of a Linear Variable Reluctance Motor

Ruchao Pupadubsin
Industrial and Control Automation (ICA) Laboratory
NECTEC

NECTEC ACE 2010 Pathumthani, Thailand
September 23-24, 2010
Contents

- Introduction
- Structure and Principle of Linear Variable Reluctance (LVR) Motor
- Position Control
- Experimental Results
- Conclusions/Future work
Introduction

» Applications of linear motion

- Automation process
- Transportation
- Material handling
- Elevator
- Assembly
- Payload

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Introduction

- Technologies for linear motion
 - Rotary motors with mechanical transmissions

Advantages

Simplicity for implementation, lower cost, more widely use

Disadvantages

Mechanical transmission losses, high maintenance, mechanical limitations on acceleration and velocity, limited accuracy

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Introduction

Technologies for linear motion
- Linear motors (direct drive): permanent magnet, reluctance, induction, DC

Advantages
- Less friction, higher accuracy, no backlash, low maintenance, longer lifetime

Disadvantages
- Higher cost, high maintenance (LPM)
Introduction

 Goals of paper

1. Develop a simple position control with good performance for LVR motor

2. Implement the developed position control, which is based on a simplified sinusoidal flux model for LVR motor

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Structure and Principle of LVR Motor

- Two E-cores moving along the stator
- Motor windings are installed on each side of the E-cores
- Strong magnetic coupling between phases
- Symmetric structure with zero normal force when balanced

"Total Sliding Mode Position Control of a Linear Variable Reluctance Motor"
Structure and Principle of LVR Motor

Advantages:
Simple structure, compactness, low cost (no permanent magnet)
Structure and Principle of LVR Motor

- **Phase voltage equations of the LVR motor in the dq0 domain**

\[
\begin{align*}
 u_d &= R i_d - \alpha L_q i_q \frac{dx}{dt} + L_d \frac{di_d}{dt} \\
 u_q &= R i_q + \alpha L_d i_d \frac{dx}{dt} + L_q \frac{di_q}{dt} \\
 u_0 &= R i_0
\end{align*}
\]

- **Force function of the LVR motor**

\[
f (i_q, i_d) = \alpha \left(L_d - L_q \right) i_q i_d
\]

\[
\alpha = \frac{\pi}{p_t}
\]
Mechanical dynamic equation of the LVR motor

\[F = M\ddot{x} + B\dot{x} + F_L \]

- \(M \): Moving mass
- \(B \): Viscous friction coefficient
- \(F_L \): External force
Position Control

- Design for high precision position control for manufacturing automation applications

- Use the dq0 theory of classical synchronous reluctance motors
 - Sinusoidal reluctance/inductance approximation
“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Position Control

1. S-curve profile command

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Total Sliding Mode Control

\[F = M\ddot{x} + B\dot{x} + F_L \]

\[\ddot{x}(t) = C_{1n}\dot{x}(t) + C_{2n}U(t) + W(t) \]

\[C_{1n} = -\frac{\bar{B}}{M}, \quad C_{2n} = \frac{1}{M} \]

\[U = F \]

\[W(t) = \text{lumped uncertainty} \]
Position Control

2. Total Sliding Mode Control

\[U = U_{BMC} + U_c \]

- \(U_{BMC} \): Baseline model control
- \(U_c \): Curbing control
Total Sliding Mode Control

Baseline model control

\[U_{BMC} = -C_{2n}^{-1}C_{1n} \dot{x} + C_{2n}^{-1} [\ddot{x} + k_p e + k_d \dot{e}] \]

1st term to compensate nonlinear effects

2nd term to determine system performance
Total Sliding Mode Control

Curbing control

\[U_c(t) = -\rho(t)C_2^{-1} \text{sgn}(S(t)) \]

To eliminate the perturbation and uncertainty effects

\[|W(t)| < \rho \]

The selection of \(\rho \) affects the chattering phenomena and system stability performance
Position Control

 Desired phase current command

\[
\begin{bmatrix}
 \dot{i}_1^d \\
 \dot{i}_2^d \\
 \dot{i}_3^d
\end{bmatrix} = \sqrt{F^d} \begin{bmatrix}
 \cos x_1 & - \sin x_1 \\
 \cos x_2 & - \sin x_2 \\
 \cos x_3 & - \sin x_3
\end{bmatrix} \begin{bmatrix}
 1 \\
 \text{sgn}(F^d)
\end{bmatrix}
\]

 Constant parameters

\[
x_j = \frac{\pi}{p_t} x + \left(j - 1 \right) \frac{2\pi}{3}
\]

\[
\gamma = \frac{3\pi}{2p_t} (L_d - L_q)
\]
Current control

\[u_j = k_i (i_j^d - i_j) \]

- Desired phase voltage

\(k_i \) = Current control parameter
Experimental setup
- dSPACE controller board
- Three phase power inverter
- 14kg payload
- Two desired trajectories for experimental test
 - Short-distance profile: 400 µm
 - Long-distance profile: 10 cm
- Two controllers for experimental test
 - Input-output linearization control [8]
 - Total sliding mode control
Position Control

Experimental setup

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Experimental Results

Position and position error responses for short-distance profile: 400 µm

Previous [8] Control

Max dynamic error ≈ 61.9 µm

Steady state error ≈ 27.5 µm

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Experimental Results

Position and position error responses for short-distance profile: 400 µm

- Max dynamic error ≈ 31.7 µm
- Steady state error ≈ 10 µm

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Experimental Results

Position and position error responses for long-distance profile: 10 cm

Max dynamic error

\[\approx 331.4 \, \mu m \]

Steady state error

\[\approx 22 \, \mu m \]

Previous [8] Control
Experimental Results

Position and position error responses for long-distance profile: 10 cm

Max dynamic error
≈ 264 µm

Steady state error
≈ 15 µm

“Total Sliding Mode Position Control of a Linear Variable Reluctance Motor”
Conclusions/Future work

➢ **Advantages**
- Simple and computationally efficient for implementation
- System robustness to parameter variations

➢ **Disadvantages**
- Chattering phenomena problem
- Future work to reduce chattering phenomena to achieve higher accuracy for high-precision application
Thank You