

Research & Development of Rehabilitation Technology in Singapore

ANG Wei Tech

Associate Professor
School of Mechanical & Aerospace Engineering
wtang@ntu.edu.sg

Assistive Technology

Rehabilitation Technology

Market: Healthcare Professionals

Rehabilitation Robots

Upper Limb Robot

Lower Limb Robot

MIT Manus Lokomat

Brain-Computer Interface (BCI) & Functional Electrical Stimulations (FES)

Mixed Reality Rehabilitation

MIXED REALITY (MR)-

REAL ENVIRONMENT AUGMENTED REALITY (AR) AUGMENTED VIRTUALITY (AV)

VIRTUAL ENVIRONMENT

Wii-Hab

Rehabilitation R&D Partnerships

Scientists

Clinician Scientists
Neuroscientists
Motor Control Scientists

Engineers (ME, EE, BioE, IT)
Computer Scientists

Rehabilitation R&D Project Types

Rehabilitation Practice

- Principal Investigator
 - Usually Clinicians (MBBS, MD, PhD)
- Scope
 - Validate new treatment/protocol with existing technology
 - Clinical trials (Phase 0-2)
- Outcome
 - Publications
 - New treatments, new protocols

Rehabilitation Technology

- Principal Investigator
 - Technologists (PhD) & Clinicians
- Scope
 - New gadget, equipment, system
 - Healthy subject trials og ists
 - Clinical trials (Phase 0)
- Outcome
 - Publications, patents
 - New systems, products, etc.

Rehabilitation R&D Project Types

Technologists

- **Principal Investigator**
 - Clinician or Scientist
 - May not involve technologist
- Scope
 - Validate new theories, test hypotheses
 - May use off the shelf technologies, e.g. motion capture system
 - Clinical trials
- Outcome
 - Publications, new models

- **Principal Investigator**
 - Usually Scientist
- Scope
 - Validate new theories, test hypotheses
 - Use new or customized technologies for experiments
 - Healthy subject trials
 - Clinical trials
- Outcome
 - Publications, new technological systems, new models

RT R&D Activities in Singapore

RT R&D Activities in Singapore

Need / Problem/Qn

- Healthcare Clinicians
- Clinician Scientists
- Neuroscientists

Technologies

- Engineers
- Computer Scientists

Funding Agencies

- National Medical Research Council (Ministry of Health)
- •A*STAR Science & Engineering Research Council (Min. of Trade & Ind)
 - National Research Foundation (PM Office)
 - Academic Research Funding (Min. of Education)
 - Spring Singapore (MTI)
 - Institution Internal Funding (MOE/MOH/Reserve)
 - Tote Board / Foundations

Brain Computer Interface

- To use Electroencephalography (EEG) or brain-wave to control devices via a computer
- Synchronous BCI
 - P300: a spike in EEG signal 300ms after an anticipated event occurs
 - Choices are displayed on a computer screen one after another, once a spike in EEG is detected, the choice displayed 300ms ago would be the intended target

P300 EVOKED POTENTIAL

Asynchronous BCI

- Movement / imagination of limb movements will invoke self-induced variations of EEG over the motor cortex
- EEG power in the μ (8-14 Hz) band will attenuate during movement
 - → This change can be used to control a BCI

Stroke patient's EEG:

BCI Research Projects in Singapore

Attention Deficit &

Hyperactivity Disorder

NANYANG

RT Innovation Projects in Singapore

Upper limb tracking with MS Kinect + accelerometers with augmented reality game interface

sEMG-driven continuous passive motion (CPM) machine

Pro-Balance[™] Balance training & screening machine

- Joint proposal by Nanyang Technological University, Tan Tock Seng Hospital & Rehabilitation Institute of Chicago, USA
- \$\$10M, 5 years
- Tripartite research partnership
 - Technologists: NTU
 - Clinicians: TTSH
 - Neuroscientists: RIC

- Scope: Upper Limb
- Target group: sub-acute stroke patients
- To address key gaps in assessment & intervention for stroke motor recovery / relearning
 - To take a technological approach
 - To be backed empirical evidence & scientific basis

Assessment

- Technology enhanced objective assessment
 - To supplement or replace current assessment scales (Functional outcome scales, e.g. FIM, BI; Neurological deficit scales, e.g. Fugl-Meyer, NIH Stroke Scale)
 - Goals: objectivity, higher resolution, better representation/estimate of true recovery
 - Parameters to measure & study: kinematic parameters, dynamic behaviours in presence of disturbance, compensation strategy

- Assessment
 - Motor Synergies: adaptability & clinical significance
 - To study how CNS uses redundancy in motor synergies
 - To study the motor synergies and adaptability of stroke subjects when mobility (redundancy) is reduced
 - Quantitative assessment of motor synergies to provide diagnostic and prognostic indicators

- Intervention
 - Adaptive interface
 - To go beyond games to encourage motivations and engagement of stroke patients
 - To keep patients involved in tasks at the neural level (even with motor inability)
 - To implement adaptive multi-agent interactions (patient, therapist, machines) in relation to the cognitive capacities of patients
 - Use of mixed reality interface & mobile devices

- Intervention
 - Cognitive Robotic Assistant Therapist
 - UL exoskeleton with modular attachment
 - Adaptable to the dynamics of the patient and will learn from the therapist, to provide 'assist-as-needed' therapy tailored to patient-specific needs
 - To use inputs from new assessment methods for adaptation basis

ANG Wei Tech

School of Mechanical & Aerospace Engineering

wtang@ntu.edu.sg

QUESTIONS OR COMMENTS?

