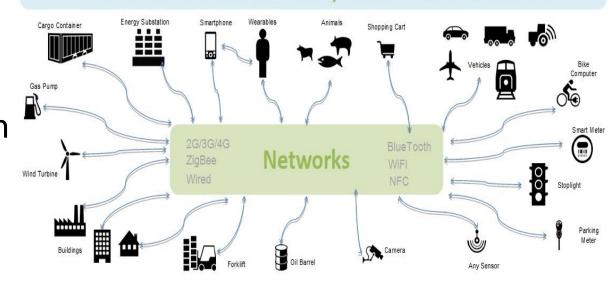


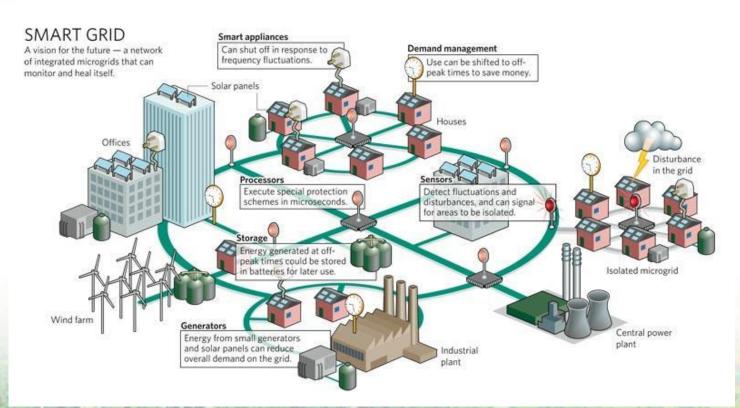
Directions of IoT Technology Development



IoT in a Nutshell

- Design pattern
 - Sense
 - Collect
 - Analyze
 - React
- Common practice in communication and computer systems design
 - Feedback control
 - Data-driven

Smart X

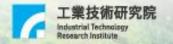

"Things" refer to any physical object with a device that has its own IP address and can connect & send/receive data via a network

Example: Smart Grid

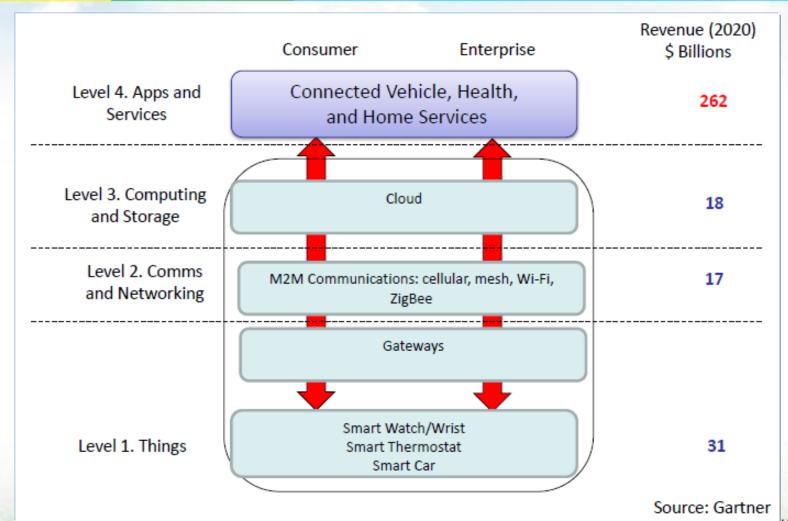
- Collect electricity load and usage geography information
- Balance supply and demand by tuning pricing, generation, transmission and distribution

Example: Intelligent Building

- Collect occupancy, weather, temperature and air quality
- Reconfigure heating, ventilation, air conditioning and lighting to minimize energy consumption


So What's New?

Scale


- Number of end-point devices in a given IoT application easily exceeds millions
- "It just works" is a must
- Examples: wearable for wellness or health management,
 connected vehicle, environmental monitoring, etc.

Variety

- Sensor data measurement, analysis, and reaction are highly domain-specific
- Domain knowhow-driven customization is key to sustainable deployment or commercial success

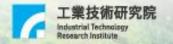
IoT Ecosystem

IoT Hardware Opportunities

- IoT device HW is indispensable but not where value is
 - Sensor: vital signs, manufacturing equipment status, structural integrity, etc.
 - Example: Non-invasive blood sugar measurement, food safety sensor
 - Low-power and heterogeneous system design
 - System in a package-based module
 - Sustainable system design: energy harvesting, self-diagnosis, targeted redundancy, etc.
- Large variety and small quantity
 - An infrastructure for rapid prototyping → small-scale manufacturing → mass production

Low-Power Design Techniques

- Ultra-low-voltage circuit: Use as little power as possible when it is turned on
 - How to deal with fabrication process variation
- Normally off computing: Turn things off whenever possible without performance/energy penalty
 - Suspend and resume quickly at fine granularities
 - Use non-volatile register and memory
- Event-driven sensor design: Turn the sensor on only when the sensor value is big enough
 - Sensor input directly turns on the sensor
 - Eliminates the periodic "wake-up and check" loop


Business Opportunities

- Innovative IoT service and business models
 - There is no silver bullet; your guess is as good as mine
 - Order of the day: explore as many alternatives as possible
- Reference platform for IoT device
 - Qualcomm, Marvell, Intel, MediaTek, ITRI and Arduino
- Reference platform for IoT backend service → IoT PaaS (Platform as a service)
 - Goal: enables quick development of the baseline backend service of a new IOT service and easy customization that incorporates domain-specific knowhow

IoT PaaS Requirements

- Overall goal: Zero or small modification required for basic IoT service, but ease of customization for advanced IoT service
 - A matter of man weeks
- Sensor data filtering, ingestion, indexing and storage
 - High-performance sensor database management
- Sensor data analysis and presentation, including Big Data-style data analysis and transformation
 - Domain-specific
 - Anomaly and alert detection and report
- Security, availability and scalability: Cloud Computing
- Manageable
- Testable

ITRI's Cerebro Platform

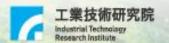
Cerebro Device Agent

Cerebro IOT Service

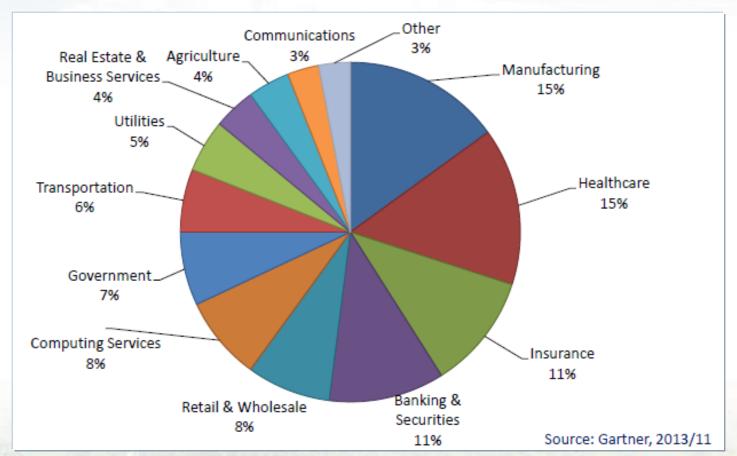
Event Query & Presentation Layer

Shallow & Deep Event Data Analysis

Scalable Event Data Ingestion & Management



Development of Cerebro-based IOT System


- Measure sensor values and output them to the backend service
- Design sensor database schema and their indexes
- Configure filtering rules on device, shallow event analysis rules, and service keys
- Write deep event analysis code running on stored sensor data on the service
- Write an app to access stored sensor data, and results of shallow and deep event analysis
- Test the IOT device and service

IoT Market in 2020

1.9 Trillion USD

Insurance and Banking?

- Name of the game in Insurance industry: precision profiling
 - More precise and comprehensive risk assessment, more accurate and competitive premium
 - Long-term-averaged and sketchy history → Real-time and detailed record,
 e.g., car insurance based on driving patterns, health insurance based on
 exercise/diet patterns
- Usage-based Insurance (UBI) or Pay As You Drive (PAYD):
 Insurance premium is tied with
 - Driving distance (Odometer)
 - Actual roads travelled (GPS)
 - Time of driving
 - Degree of congestion (traffic condition sensor)
 - Driving behavior: speeding, using smartphones while driving, distraction, or drunk driving (OBD-II)

Alibaba's Finance Service

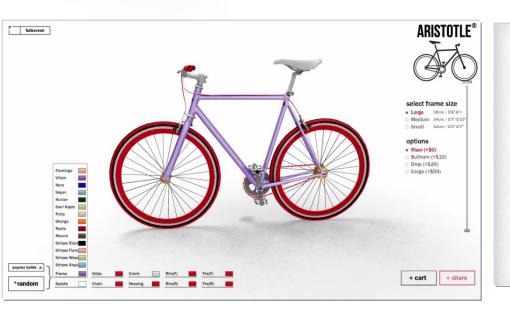
- Every Alibaba loan costs 0.3 yuan (about 5 U.S. cents), roughly 1/1,000 of a traditional loan processing cost. Bad loan percentage is 1.3%, slightly higher than the banking industry's average of around 1%.
 - Secret: E-commerce trading data on Alibaba's platform
- The Ant Group's Sesame credit assessment (芝麻信用分)
 - Credit history: credit borrowing and repayment record
 - E-commerce transaction record
 - Personal and family bill payment record
 - Authenticity and intensity of on-line social interactions
 - Depth and breadth of on-line social connectivity
 - Applications: dating, deposit for hotel reservation, travel visa, etc.

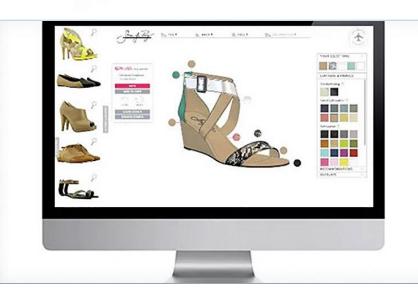
So Where Is the Money?

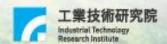
- Nobody has good answers yet
- Consumer vs. Non-consumer
- Wearable vs. Non-wearable
- My picks:
 - Connected vehicle:
 - Autonomous driving
 - E-car battery management
 - Manufacturing automation: Industry 4.0
 - Semiconductor fabrication process as a model
 - Product support and maintenance
 - Machining tool
 - Long-term elderly care: a societal challenge

NEST Labs

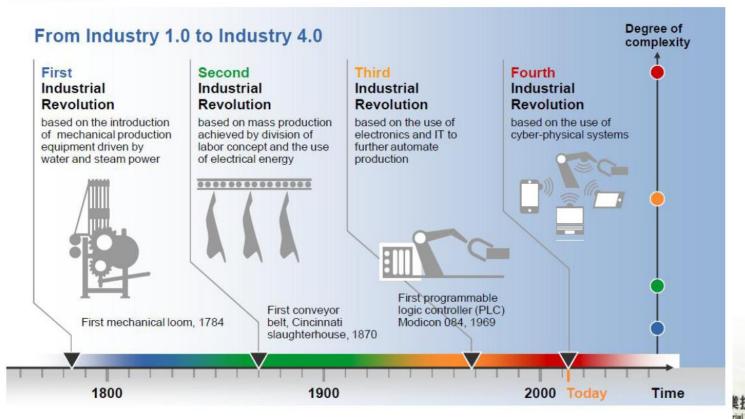
- Nest Learning Thermostat: an electronic, programmable, and self-learning Wi-Fienabled thermostat that automatically tunes heating and cooling of homes and businesses to conserve energy
- Controllable by smartphone app
- Home-used thermostat market share second to Honeywell
- Acquired by Google for \$3.2B in Jan 2014
- Acquired Dropcam for \$550M in July 2014


Fitbit

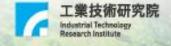

- An activity tracker in the form of a wireless-enabled wearable device that measures data such as the number of steps walked, quality of sleep, steps climbed, and other personal metrics
- Needs a basestation or PC to upload data
- Smartphone apps for monitoring
- 58% of the activity tracker market
- IPO in May 2015



Mass Customization

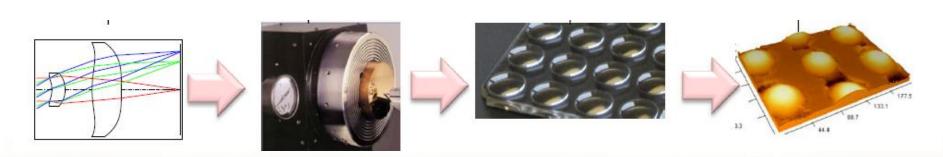


Industry 4.0


 An industrial IoT: Use of sensor values for work pieces and manufacturing equipment for real-time manufacturing process optimization

Siemens's Smart Plant in Amberg

- 950 production lines using 1.6B component combinations coming from 250 suppliers
- 24 hours turn around time with an error rate < 10 ppm
- 7 times improvement in productivity in 20 years

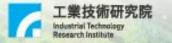

Key Building Blocks of Industry 4.0

- Sensors for manufacturing equipment and work pieces
 - Work piece: Error between "should be" and "turn out to be"
 - Example: All-optical instrumentation (AOI), but other sensors are needed, e.g., how to measure how tightly a screw is twisted
 - Manufacturing equipment: health status and operation condition
- Industrial-grade sensor network and manufacturing information model: OPC UA
- Real-time sensor data analysis and feedback control
 - Model-based: Cyber physical system
 - Statistics-based: Big data

Cyber Physical System

- CAD output → CAM instructions
- Digital simulation model of manufacturing process
- Use measured manufacturing errors to fine-tune manufacturing equipment in real time
- Design → Mold creation → Mold-based fabrication → Error measurement → Mold/Design change →

Advanced Optical Lens Design and Manufacturing


MySpendingBook

- What if we can sense and collect every family's expenditure?
 - A unique open data source in Taiwan enables this
- Service Concept: A personal or family archive of electronic invoices stored in Ministry of Finance
- Free services offered to consumers
 - A permanent record of all expenditure involving electronic invoices
 - Basic analysis tools for spending records
 - Discount notification and e-coupon delivery
 - Platform for precision target marketing
 - Formation of purchase groups for store-initiated and consumer-initiated volume discounts

Summary

- Internet of Things (IoT) and Internet of Everything (IoE) applications are on the rage
 - Wearable device and connected self/home/vehicle
 - Value is in data and service
 - Google/Apple want to own everybody's data
- Current challenge: technologies are largely ready, but profitable service/business models remain elusive
 - Many exploration trials are needed
 - Rapid development of IOT devices and IOT services
 - This is where home-grown IOT PaaS comes into play
 - For Taiwan, B2B may be more promising than B2C

Thank You!

Questions and Comments?

tcc@itri.org.tw

