

# Working Together to Develop Key Technologies for the Internet of Things

Towards Data Centric Computing for the Future of Internet of Things

### Satoshi Sekiguchi, Ph.D.

### Director General,

Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST)



#### National Institute of Advanced Industrial Science and Technology, JAPAN





### AIST: Expected mission for innovation

| Basic Study       Applied Research and Development       Feasibility Study       Market in         1       2       3       4       5       6       7       9       0                                                                                                                                               | TRL (                     | Technolo                         | ogy Readi                        | ness Lev                    | (el)                                            |                                                    |                                                                 | mae                                    | s production                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|----------------------------------|-----------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|----------------------------------------------------|
| 1 2 3 1 5 6 7 9 0                                                                                                                                                                                                                                                                                                  | Basic Study               |                                  | Applied Research and Development |                             | Feasibility Study                               |                                                    | Market in                                                       |                                        |                                                    |
|                                                                                                                                                                                                                                                                                                                    | 1                         | 2                                | 3                                | Λ                           | 5                                               | 6                                                  | 7                                                               | 8                                      | Q                                                  |
| actual system proven in<br>operational environment<br>system prototype<br>demonstration in<br>operational environment<br>technology validated in<br>relevant environment<br>technology validated in<br>relevant environment<br>technology concept<br>technology concept<br>formulated<br>basic principles observed | basic principles observed | technology concept<br>formulated | 9 experimental proof of concept  | technology validated in lab | technology validated in<br>relevant environment | technology demonstrated<br>in relevant environment | system prototype<br>demonstration in<br>operational environment | <b>)</b> system complete and qualified | actual system proven in<br>operational environment |
| Basic AIST Market<br>Science (Bridging chasm)<br>Universities                                                                                                                                                                                                                                                      | Basic<br>Scienc           | sities                           | (B                               | Als<br>ridging              | ST<br>g chas                                    | m)                                                 | Busine                                                          | ss pa                                  | Market<br>.rtners                                  |



# Key topic – "The Internet of Things" (IoT)

IoT is the network of physical objects or "things"

- embedded with electronics, software, sensors,
- connectivity to enable objects to collect and exchange data.
- IoT allows objects to be sensed and controlled remotely across existing network infrastructure
  - creating opportunities for more direct integration between the physical world and computer-based systems,
  - resulting in improved efficiency, accuracy and economic benefit.



From Wikipedia, the free encyclopedia



### The Trinity – IoT, Big Data, CPS changes the paradigm





# Big DATA ANALYTICS



#### Gartner 2015 Hype Cycle: Big Data is Out, Machine Learning is in





### Anomaly detection for video surveillance





### Anomaly detection for histological diagnosis





# Anomaly detection

Subspace distance :

$$d_{\perp} = \| \boldsymbol{P}_{\perp} \boldsymbol{x} \|$$

$$\boldsymbol{P}_{\perp} = [\boldsymbol{u}_{K+1}, \cdots, \boldsymbol{u}_{251}]^T$$
Unusual pattern
$$\begin{cases} d_{\perp} \leq n \sigma_K \quad \textbf{Usual} \\ d_{\perp} > n \sigma_K \quad \textbf{Unusual} \end{cases}$$
Contribution rate
$$\sigma_K^2 = \sum_{i=K+1}^M \lambda_i$$

$$\frac{\lambda_j}{\sum_{k=1}^M \lambda_k}$$



Subspace

Distance d

 $q_{\wedge}$ 

slide by courtesy of Dr. K. Iwata

Usual patterns



# Big Data: A key to success in Business



### Big Data Everywhere

18B (2015) IC-tag ->in 2020 50B

2.0B internet users (2011) Traffic 667 Exabytes (2013)

Facebook 10 Terabytes Twitter 7 Terabytes social data daily



# 4.6B Cell phones world wide

Google handles 24 Petabytes of data

NYC stock exchange handles **1** Terabyte of transactions



2020 40ZB

2012 EMC & IDC

CERN LHC generates 40 Terabytes/day



### Big Data is/is not

Emerging story

- Small <10GB</p>
- Medium 10GB-1TB
- ► Big > 1TB



- 'Big-data' is similar to 'Small-data', but bigger<sup>(\*)</sup>
  - ...but having data bigger consequently requires different approaches:
    - @ techniques, tools, architectures
  - ...with an aim to solve new problems
     @ ...and old problems in a better way.
  - Big Data is multi-structured data

\*) Mark Globelnik "Big-Data tutorial" in 201;



#### Big Data's 3Vs Velocity(頻度) Streaming Data POS Customer Batch Logs flickr Big web Structured You Tube \*\* Data Structured & Terabytes Unstructured movie files, images, documents, geo-Zettabytes location data, web logs, and text strings Volume(量) Variety(多様性)



# Evidence based value creation





traceability

# Big-data use-cases for industry segments

#### Communication & Finance & Insurance Commerce & Logistics Broadcasting Detection of System log analysis Management of improper activities incentives and Network analysis rewards Transaction analysis Audience rating Consumer sales • Risk analysis Contents analysis marketing and Telematics Insurance promotion **Public sectors** Manufacturing Web and media • Quality Access log Meteorology analysis management • disaster • Demand analysis Content analysis mitigation Analysis of • Product

- Energy planning
- Risk mitigation

Based on

http://www.hitachi.co.jp/products/it/bigdata/column/column02.htm

social-media

activities



# Big Data for Manufacturing

How many of you feel a reality of receiving benefit from IoT ?



### Industry 4.0 production system

Supply Chain Management





# Paradigm shift in manufacturing industry

from manufacturing
(tangible object) to service (intangible value)

manufacturing: value chain of products (from supply side to consumers)



service: value chain of information between supply side and demand side (Both of supply chain and demand chain)



### Big Data x Deep Data





### Insole Customization and Footwear Design





### Child Safety through Design





# More Big Data Challenges



### Big Data Challenges





# Real-time Analytics Platform for Big Data

- The platform must have a highly scalable online machine learning system
  - Continuously captures incoming streamed data
  - And performs deep analytics using machine learning algorithms, e.g., label prediction, recommendation, anomaly detection, etc.
  - ▶ Up to 10K real-time events can be processed in a second

Discover "facts" from the past on real-time + Predict "future" using prior knowledge







IMPULSE: Initiative for Most Power-efficient Ultra-Large-Scale data Exploration

#### **Non-Volatile Memory**

- Voltage-controlled, magnetic RAM mainly for cache and work memories

### **High-Performance Logic**

- 3D build-up integration of the front-end circuits including high-mobility Ge-on-insulator FinFETs. / AIST-original TCAD

### **Optical Network**

- Silicon photonics cluster SW
- Optical interconnect technologies

#### **Architecture**

 Future data center architecture design / Dataflow-centric warehousescale computing





### Architecture for Big Data and Extreme-scale Computing

### Warehouse Scale and data flow centric computing

1 - Single OS controls entire data center

2 - Guarantee the real time data processing by the priority controlled architecture for data flow

#### Data center OS





### Final Remarks

- The Trinity IoT/Big Data/CPS is the key to business success
- Your imagination will create value for new business and societal infrastructure.
- Another key area is Big Data X Manufacturing
   beyond Industrie 4.0 and/or Industrial Internet
- Think about architectures for future data centers to deal your big data
- Many opportunities to work together in Business and Research.



# Thank you !