HPC Meets Big Data

Manaschai Kunaseth

National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Thailand Science Park, Pathum Thani, THAILAND

manaschai@nanotec.or.th

Biography

Manaschai Kunaseth

- Researcher
- Nanomaterials and Nanosystems Engineering Unit, NANOTEC

Research interests:

Computational chemistry:

- DFT simulations: Catalytic chemical & reactions, adsorbent design
- Reactive MD: Method development

Computer Science:

- Parallel algorithm design and analysis on massive-scale supercomputers
- Data analysis and visualization

manaschai@nanotec.or.th

HPC Meets Big Data: Computer-Aided Drug Design

 Finding key (drug) for the lock (target protein)

Anti-depressant drug:

Serotonin–norepinephrine reuptake inhibitor: Cycloalkanol ethylamine scaffold Quantitative Structure-Activity Relationship (QSAR)

Predictor

Activity

- Experiment
- Simulation

Regression/ Classification e.g. SVM, PLS

- Experiment
- Simulation

3D QSAR

HPC Application: Molecular Simulation

QM: Density functional theory (DFT)

- Degree of freedom: *Electron density, atom positions*
- A first-principle calculation
- Computationally expensive (atoms < 500)

- Degree of freedom: *Atomic positions*
- Empirical force-fields
- Less expensive (atoms $< 10^6 10^7$)

HPC Meets Big Data 9/11/2017

H₂ production from Al superatoms. (Adapted from Ohmura et al., J. Chem. Phys. (134(24):244702 (2011))

ATP molecule passes from one side of the membrane to the other through the transmembrane pore. (Adapted from Yoo & Aksimentiev, *J. Phys. Chem. Lett.* 6 4680-4687(2015))

Catalysis for Energy Production

CO₂ Electrochemical Reduction to Methanol and Methane on Stepped Cu-based Alloys (211) Surfaces

- P. Hirunsit et al. J. Phys. Chem. C 2013, 117 (16), 8262-8268.
- P. Hirunsit et al. J. Phys. Chem. C 2015, 119 (15), 8238-8249.

CO₂ Electrochemical Reduction to Ethylene on Cu(100), Cu(110) and Cu(111) Surfaces (Collaboration with Jason Yeo at NUS)

Y. Huang et. al., ACS Catal. 2017, 7, 1749-1756.

Palm Oil Conversion to Biofuel using Ni₂P Catalyst

Catalytic Transfer Hydrogenation for y-Valerolactone (GVL) using NiCu Alloy

H₂ Activation on Partially Promoted Metal Edge of CoMoS and NiMoS

C. Sattayanon, et al., Fuel Process. Technol. 2017, 166, 217.

Catalysts and Adsorbents for Pollutant Removal

Development of Nanomaterials for Hg Removal

TiO₂-supported metal nanoparticles for Hg⁰ removal

Activated carbon for Hg⁰ removal

C. Rungnim, et al., Chem. Eng. J. 2015, 274, 132-142.

C. Rungnim et al., J. Hazard. Mater. 2016, 310, 253-260.

Metal Deposited Defective Graphene for Volatile Organic Compound Removal

M. Kunaseth et al. Appl. Surf. Sci. 2017, 396, 1712-1718.

A. Junkaew et al., New J. Chem. 2015, 39, 9650-9658.

Nanomaterials for NO_x Removal

SCR-NH₃ of NO in metal oxide-based catalysts

NO reactions in Metal complex and carbon-based catalysts

J. Meeprasert et al., RSC Adv. 2016, 6, 20500-20506. A. Junkaew et al., RSC Adv. 2017, 7, 8858-8865.

Nanomaterials for H₂S Desulfurization

A. Junkaew et al., Catal. Sci. Technol. 2017, 7, 356-365.

Biorefinery

- Biorefinery integrates biomass conversion technologies to product biopower, biofuels, and bioproducts
- Biorefinery in Thailand's Strategic Plan:
 - Thailand's New S-Curve
 - NSTDA focused research (Bioeconomy)
 - Potential project in EECi (NANOTEC)
 - Integrated platform (bio-based material)
- Multi-national centers collaboration
 - MTEC, BIOTEC, NANOTEC

Source: United Stats Environmental Protection Agency and the National Renewable Energy Laboratory, State BioEnergy Primer, 2009

HPC & Big Data Applications: Similarities and Differences

- Both require huge computing power
 - HPC: high computation per byte (computation & memory-bandwidth bound)
 - Big Data: Low computation per byte (disk access & network transfer bound)
- Data point obtain from HPC application (and other scientific simulation) is usually expensive

