Key Obstacles for Quantum Supremacy

Sujin Suwanna

Optical and Quantum Physics Laboratory, Department of Physics, Mahidol University

Research Interests

- Fundamental quantum physics
 - Quantum stochastic dynamics/tomography
 - Decoherence & quantum to classical transition
- Noise spectroscopy & feedback control
- Quantum communication (with photons)
 - Random number generators
 - Single photon generation/quantum repeaters
 - Quantum Key Distribution
- Quantum algorithms/computing
 - Quantum random walks/ with IBM's QisKit
 - Application to finance

Collaboration and Support

Tasks/Questions

- o Understand behaviors of quantum systems under noise.
- How to detect/suppress/control decoherence?
- Understand coherence effects on quantum algorithms/communication channel.
- How to construct quantum network?

	H-BAR: QUANTUM TECHNOLOGY CONSULTANTS	H-BAR	ABOUT	RESOURCES	BLOG	NEWS
--	--	-------	-------	-----------	------	------

\circ qubit scalability

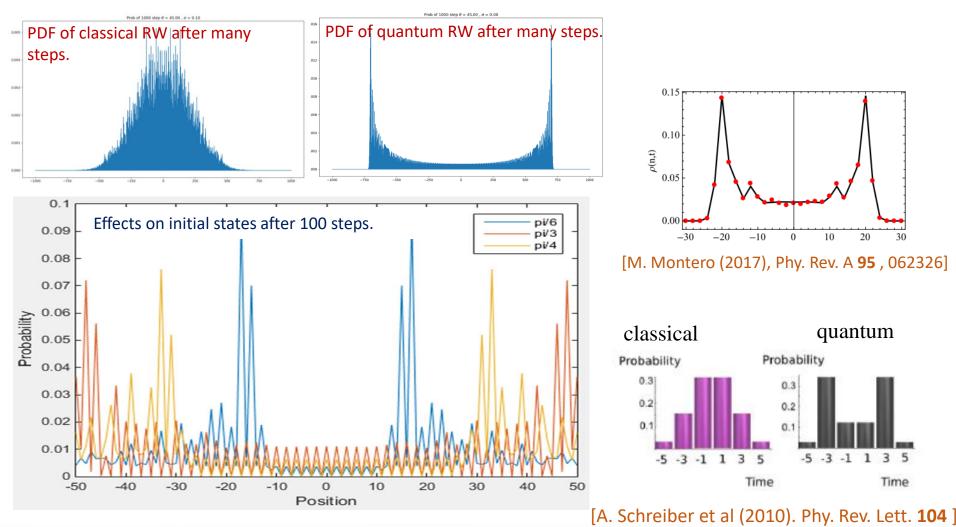
o decoherence

o qubit control

mmentary

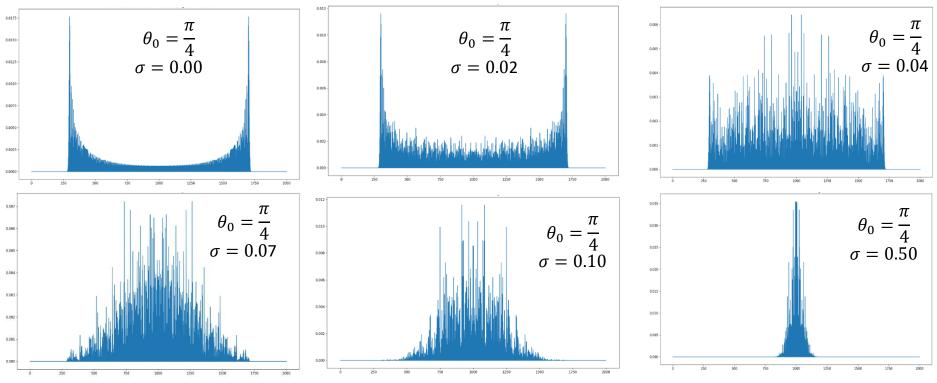
\ Λ / |_ ___ = ___ = ___ : ff: ____ |_ __ = __

Why Quantum Computers Won't Replace Classical Computers Anytime Soon



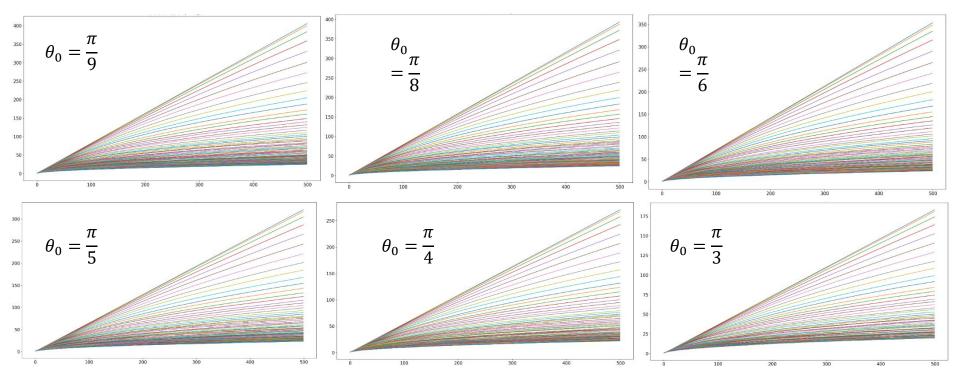
Susan Galer Brand Contributor SAP BRANDVOICE | Paid Program Innovation Forbes, Sept. 4, 2019

PROBABILITY DISTRIBUTION WITHOUT FLUCTUATION IN COIN OPERATOR



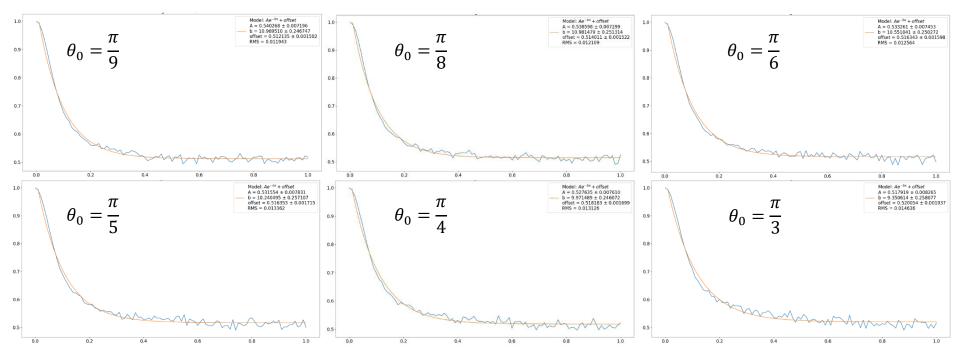
QUANTUM RANDOM WALKS WITH FLUCTUATING COIN OPERATORS

QRW Characteristics


• X axis: position after 1000 steps. steps. Y axis: probability of occupying X after 1000

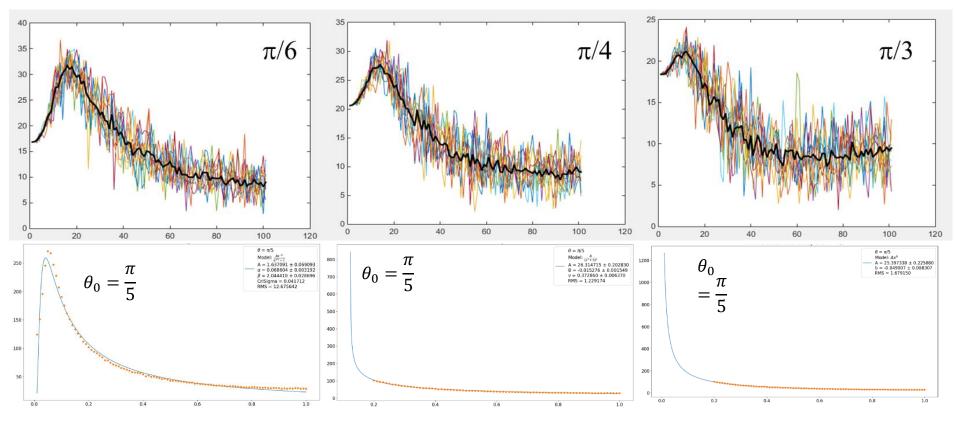
• Common occurrence for all angle θ_0 , but transition point σ_c depends on θ_0

ROOT MEAN SQUARE DISTANCE AFTER 1000 STEPS

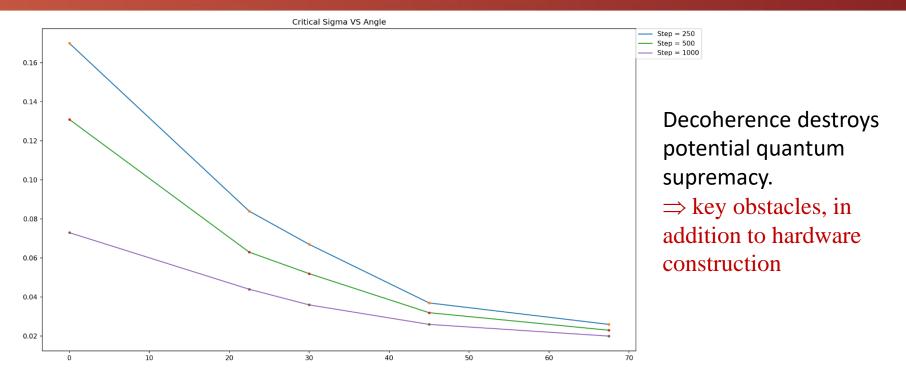


X axis: time (1000 steps). Y axis: root mean square distance r(t) ≔ √⟨x²⟩.
σ = 0.00, 0.01, 0.02, ..., 0.99, 1.00
r(t) = At^β with ¹/₂ ≤ β ≤ 1, coefficients depending on θ₀ and σ

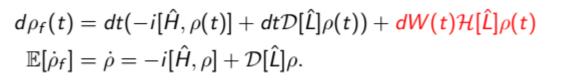
ROOT MEAN SQUARE CRITICAL EXPONENT AFTER 1000 STEPS


- X axis: fluctuation strength σ (%). Y axis: β
- β exponentially decays as σ increases, with asymptotic at $\beta = 0.5$ • Quantum to classical transition is continuous!

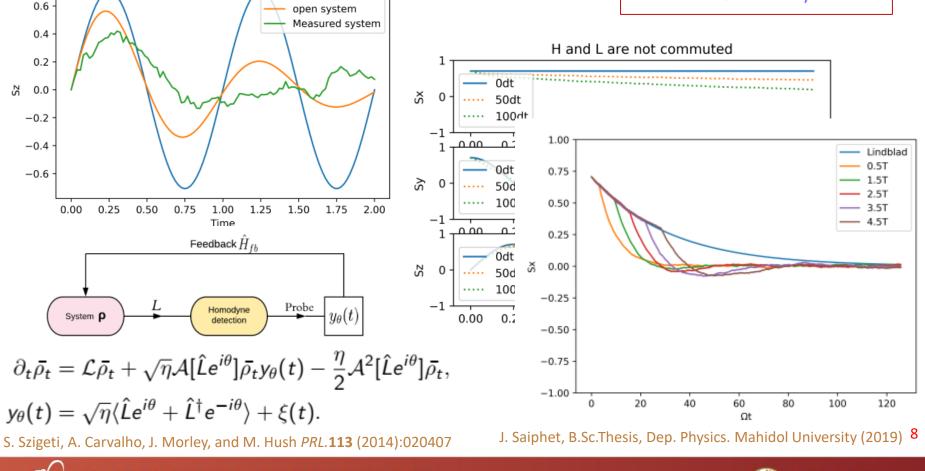
QUANTUM RANDOM WALKS WITH FLUCTUATING COIN OPERATORS


Localization of PDF profiles as seen from inverse participation ratio (IPR).

 \circ IPR shows localization as σ increases, but weaker than Anderson localization.


Interpretation of results

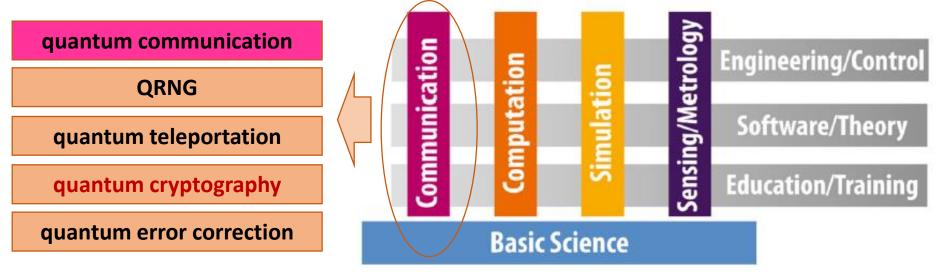
- Tails fit well with power law $A\sigma^{-\nu}$ or polynomial decay $\frac{A}{(a\sigma+b)^{\xi}} \Rightarrow$ fluctuation around 10%
 - yields quantum to classical transition.
- Number of operations exponentially decrease with high disorder
- Quantum state loose its quantumness exponentially quick with high disorder and number of operations (walks).


Example: Quantum Feedback Control

closed system

No-Knowledge Measurement with Hermitian Operator

$$\Rightarrow \quad \partial_t \bar{\rho_t} = -i[\hat{H} - \hat{L}y_{\pi/2}(t), \bar{\rho_t}].$$

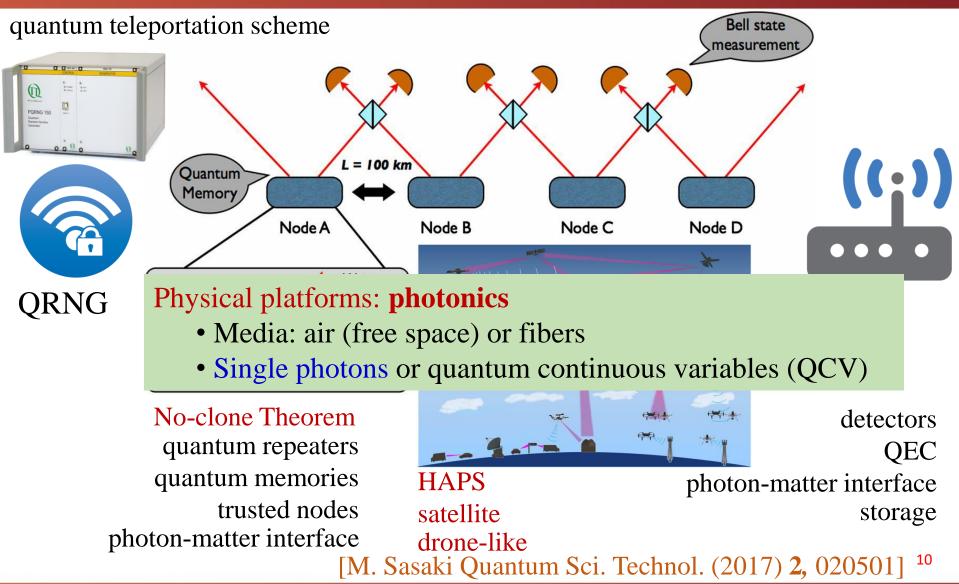


Key Obstacles for Quantum Supremacy

Quantum Science and Technology

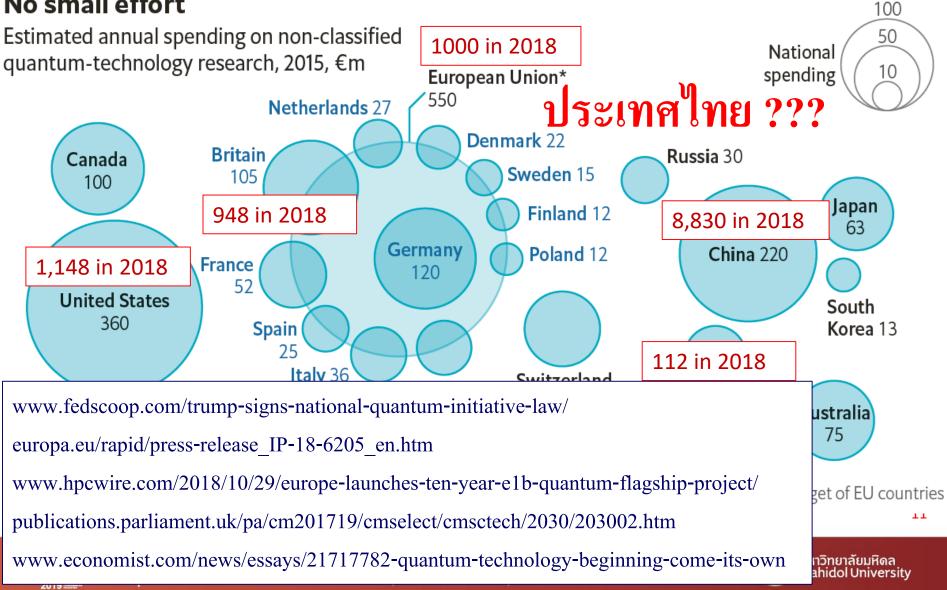
Technology that exploits "quantum properties" or "quantum states" of light and matter to perform calculation, evaluation, communication, restoration or presentation of data with the goals to understand, control, process and manipulate quantum systems to yield ability beyond the limit of classical world.

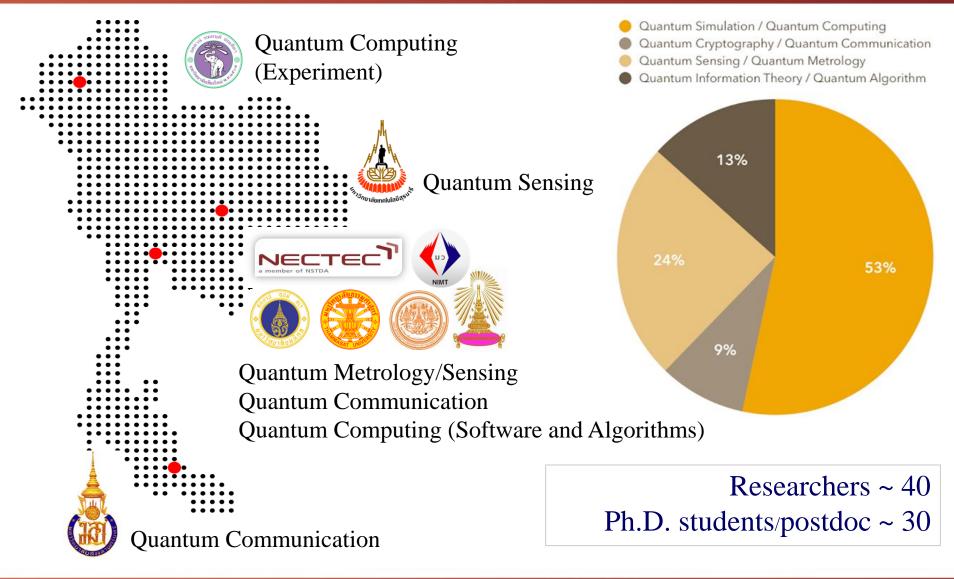
- Key properties such as superposition, entanglement, teleportation, no cloning
- Many platforms using light, spins, paths, fundamental particles


[A. Acin et al 2018 New J. Phys. 20 080201]

g

Quantum Communication "Scheme"





Key Obstacles for Quantum Supremacy

No small effort

Is Thailand Ready?

