

Total Sliding Mode Position Control of a Linear Variable Reluctance Motor

Ruchao Pupadubsin

Industrial and Control Automation (ICA) Laboratory NECTEC

NECTEC ACE 2010 Pathumthani, Thailand September 23-24, 2010

Contents

- > Introduction
- ➤ Structure and Principle of Linear Variable Reluctance (LVR) Motor
- > Position Control
- > Experimental Results
- > Conclusions/Future work

Applications of linear motion

- > Technologies for linear motion
 - Rotary motors with mechanical transmissions

Advantages

Simplicity for implementation, lower cost, more widely use

Disadvantages

Mechanical transmission losses, high maintenance, mechanical limitations on acceleration and velocity, limited accuracy

- > Technologies for linear motion
 - Linear motors (direct drive): permanent magnet, reluctance, induction, DC

Advantages

Less friction, higher accuracy, no backlash, low maintenance, longer lifetime

Disadvantages

Higher cost, high maintenance (LPM)

- **>** Goals of paper
 - 1. Develop a simple position control with good performance for LVR motor

2. Implement the developed position control, which is based on a simplified sinusoidal flux model for LVR motor

- > Two E-cores moving along the stator
- ➤ Motor windings are installed on each side of the E-cores
- > Strong magnetic coupling between phases
- > Symmetric structure with zero normal force when balanced

Advantages:

Simple structure, compactness, low cost (no permanent magnet)

➤ Phase voltage equations of the LVR motor in the dq0

domain

$$u_{d} = Ri_{d} - \alpha L_{q}i_{q} \frac{dx}{dt} + L_{d} \frac{di_{d}}{dt}$$

$$u_{q} = Ri_{q} + \alpha L_{d}i_{d} \frac{dx}{dt} + L_{q} \frac{di_{q}}{dt}$$

$$u_{0} = Ri_{0}$$

> Force function of the LVR motor

$$f(i_q, i_d) = \alpha \left(L_d - L_q \right) i_q i_d$$

$$\alpha = \frac{\pi}{p_t}$$

➤ Mechanical dynamic equation of the LVR motor

$$F = M\ddot{x} + B\dot{x} + F_L$$

M: Moving mass

B: Viscous friction coefficient

 F_L : External force

> Design for high precision position control for manufacturing automation applications

- ➤ Use the dq0 theory of classical synchronous reluctance motors
 - Sinusoidal reluctance/inductance approximation

> Control block diagram

> S-curve profile command

> Total Sliding Mode Control

$$F = M\ddot{x} + B\dot{x} + F_L$$

$$\ddot{x}(t) = C_{1n}\dot{x}(t) + C_{2n}U(t) + W(t)$$

$$C_{1n} = -rac{\overline{B}}{\overline{M}} \ , C_{2n} = rac{1}{\overline{M}}$$

$$U = F$$

W(t) = lumped uncertainty

> Total Sliding Mode Control

$$U = U_{BMC} \, + U_c$$

 U_{RMC} : Baseline model control

 U_c : Curbing control

- 2
- **➤ Total Sliding Mode Control**
 - :Baseline model control

$$U_{BMC} = -C_{2n}^{-1}C_{1n}\dot{x} + C_{2n}^{-1}\left[\ddot{x} + k_p e + k_d \dot{e}\right]$$

1st term to compensate nonlinear effects
 2nd term to determine system performance

- > Total Sliding Mode Control
 - :Curbing control

$$U_c(t) = -\rho(t)C_{2n}^{-1}\operatorname{sgn}(S(t))$$

To eliminate the perturbation and uncertainty effects

$$|W(t)| < \rho$$

The selection of ρ affects the chattering phenomena and system stability performance

3) > Desired phase current command

$$\begin{bmatrix} i_1^d \\ i_2^d \\ i_3^d \end{bmatrix} = \sqrt{\frac{|F^d|}{\gamma}} \begin{bmatrix} \cos x_1 & -\sin x_1 \\ \cos x_2 & -\sin x_2 \\ \cos x_3 & -\sin x_3 \end{bmatrix} \begin{bmatrix} 1 \\ \operatorname{sgn}(F^d) \end{bmatrix}$$

> Constant parameters

$$x_j = \frac{\pi}{p_t}x + (j-1)\frac{2\pi}{3}$$
 $\gamma = \frac{3\pi}{2p_t}(L_d - L_q)$

$$\gamma = \frac{3\pi}{2p_t}(L_d - L_q)$$

Current control

$$u_j = k_i (i_j^d - i_j)$$

- Desired phase voltage

 k_i = Current control parameter

- > Experimental setup
- dSPACE controller board
- Three phase power inverter
- 14kg payload
- Two desired trajectories for experimental test
 - Short-distance profile: 400 μm
 - Long-distance profile: 10 cm
- Two controllers for experimental test
 - Input-output linearization control [8]
 - Total sliding mode control

Experimental setup

Position and position error responses for short-distance profile: 400 µm

Position and position error responses for short-distance profile: 400 µm

Position and position error responses for long-distance profile: 10 cm

Position and position error responses for long-distance profile: 10 cm

Conclusions/Future work

- > Advantages
 - Simple and computationally efficient for implementation
 - System robustness to parameter variations
- Disadvantages
 - Chattering phenomena problem
 - Future work to reduce chattering phenomena to achieve higher accuracy for high-precision application

Thank You