

Dissolved Oxygen Level Monitoring in Shrimp Aquaculture using Embedded System

NECTEC-ACE 2010
23 September 2010
Science Park
by Embedded System Technology Laboratory (EST)

NSTDA: National Science and Technology Development Agency

NECTEC: National Electronics and Computer Technology Center

Why do we need Embedded NECTECT System in shrimp aquaculture?

- 1) To manage the resource usage
- 2) To increase the productivity
- 3) To reduce risk
- 4) To manage the production process
- 5) To collect data for research and analysis

Embedded System Platform Requirements

- 1) Sensor interface
- 2) Actuator interface
- 3) Flexible power supply (AC or solar cell)
- 4) Wired and wireless communication
- 5) Internet enabled system

Platfrom Architecture

Hardware Platfrom

1) MCU and RF mezzanine

2) I/O module

3) Ethernet Gateway module

4) GPRS Gateway module

Software Platfrom

Distributed Application Framework

Communication Protocol

Non-Preemptive Kernel

Hardware Driver

Communication protocol

Application-Layer

Adaptation-Layer

MAC Polling

RS485 | RF 433MHz

HTTP1.1

TCP/IP

GPRS

Ethernet

Intra platform

Gateway

Aquaculture monitoring

Embedded System in Shrimp Aquaculture

- Thailand is the world leading shrimp exporter
- □ In 2008
 - there were 25,000 shrimp farms
 - 72,000 hectares used by shrimp farms
- Up to 3 cycles per year
- Utilized high density or intensive production system
 - Deploy higher level of technologies and management

Environmental Management NECTE in Shrimp Pond

- Need to control water quality
 - Temperature, dissolved oxygen, pH, CO₂, Salinity, Hardness, Alkalinity, Translucent, Ammonia, Nitrate, and Hydrogen Sulfide
- Most important parameter is Dissolved Oxygen
- Can be controlled by paddlewheel aerator

Suitable Water Quality for NECTECT White Shrimp

Quality	Suitable Level
Temperature (Celsius)	28-32
Dissolved Oxygen (mg./L.)	> 5
рН	7.5 - 8.0
CO ₂ (mg./L.)	< 20
Salinity (part per thousand)	2-35
Hardness (mg./L. of CaCO ₃)	> 150
Alkalinity (mg./L. of CaCO ₃)	> 100
Translucent of water (cm.)	20-40
Ammonia (free) (mg./L.)	< 0.1
Nitrate (mg./L.)	< 200
Hydrogen Sulfide (mg./L.)	< 0.002

Frequency of Monitoring

Parameter	Frequency	Time of Day
Temperature	Daily	Morning and afternoon (6.00-17.00)
Dissolved Oxygen	Daily	Evening and Early morning
рН	Daily	Morning and afternoon (6.00-17.00)
Ammonia, Nitrate	Every 2-3 days	-
Salinity, Alkalinity, Minerals, Bacteria	Weekly	-

How can embedded system help?

- Automated Monitoring of important parameters
 - Reduce majority of the tasks for shrimp farmers
 - Simplified water quality management
 - Increased productivity
 - Detect unexpected change in water quality to avoid catastrophic mortality of shrimp
- Automated Control of Paddlewheel Aerators
 - Turn on/off aerators when needed
 - Could save energy cost of operating aerators

Embedded System for Shrimp Aquaculture

Remote Web Monitoring

เนคเทคเป็นองค์กรของรัฐที่จัดตั้งขึ้นเพื่อศึกษาวิจัยด้านเทคโนโลยีอิล็กทรอนิกส์และคอมพิวเตอร์ เพื่อการพัฒนาประเทศไทย ไม่ได้มีวัตถุประสงค์เพื่อแสวงหากำไร หากท่านพบว่ามีข้อมูลใดๆที่ละเมิดทรัพย์สินทางปัญญาปรากฏอยู่ในเว็บไซต์ของเนคเทค โปรดแล้งให้เนคเทคทราบเพื่อตำเนินการแก้ปัญหาดังกล่าวโดยเร็วที่สุดต่อไป

> สงวนลิขสิทธิ์ ตาม พรบ.ลิขสิทธิ์ พ.ศ. 2537 โดย ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ 112 อุทยานวิทยาศาสตร์ประเทศไทย ถนนพหลโยธิน ตำบลคลองหนึ่ง ฮำเภอคลองหลวง จังหวัดปทุมธานี 12120

Average Measurement of Dissolved Oxygen from a shrimp ponds

Conclusion

- 1) The platform was built and applied to aquaculture applications Shrimp
- Main sensor device is the DO sensor an electromechanical type
- 3) Monitoring of DO level over long period of time, e.g. 31 days or more.
- 4) Potential for reduce energy usage of paddlewheel aerators

Future research

- 1) Improve Wireless sensor network
 - New protocol and hardware
- 2) Improve DO sensor with optical type
- 3) Automate control of paddlewheel aerators around shrimp pond
 - Monitor energy saving versus realtime
 DO level in ponds

Thank you

NSTDA: National Science and Technology Development Agency

NECTEC: National Electronics and Computer Technology Center