

Optimizing Weight Factors in Multi-Objective Geometric Programming

Theerachet Soorapanth

Thai IC Design and Innovation (TIDI)
Thai Microelectronics Center (TMEC)
National Electronics and Computer Technology Center

Outline

- Introduction.
- Single-objective vs multi-objective optimization.
- Geometric programming (GP).
- Op-amp design via GP.
- Single-objective vs multi-objective GP.
- Proposed MOGP algorithm.
- MOGP: fixed weights vs optimized weights.
- Conclusions.

NECTEC

Mathematical Programming Optimization

Minimize f(x) such that

$$g_i(x) \le c$$
 ; $i = 1...m$
 $h_i(x) = c$; $i = 1...n$
x is vector of variables.

- Linear program: f(x),g_i(x),h_i(x) are linear functions,
 eg. Ax+B.
- Quadratic program: f(x) is quadratic function and g_i(x), h_i(x) are linear functions.
- Integer program: same as linear program but x must be integer-valued.

Single-Objective vs Multi-Objective Optimization

- Single-objective \Rightarrow f(x) represents one objective.
- Multi-objective \Rightarrow f(x) represents a set of objectives.

Minimize
$$F(x) = [f_1(x), \dots, f_n(x)]$$

subject to $G_i(x) = 0, \quad i = 1, \dots, m$
 $G_j(x) \le 0, \quad j = 1, \dots, p$
 $x_l \le x \le x_u$

Solving Multi-Objective Problem

 Scalar method : combine multiple objectives into one scalar objective, eg. weighted sum.

 \Rightarrow minimize $\sum w_i f_i(x)$

Geometric Programming

Minimize f(x) such that

$$g_i(x) \le 1$$
 ; $i = 1...m$
 $h_i(x) = 1$; $i = 1...n$
 $x_i > 0$; $i = 1...p$

- f(x) and g_i(x) are posynomial functions; h_i(x) are monomial functions.
- Posynomial functions follow the following form

$$f(x_1,...,x_n) = \sum_{k=1}^t c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} ... x_n^{\alpha_{nk}} ; c_k \ge 0$$

Monomial functions are posynomials with only one term.

Multi-Objective Geometric Program

 Based on scalar formulation such as weighted-sum or product, new combined objective is also posynomial as posynomials are closed under positive additions and multiplications.

Minimize
$$F_s(x) = \sum w_i f_i(x)$$
; $w_i \ge 0$
Minimize $F_p(x) = \prod f_i(x)$

• Both $F_s(x)$ and $F_p(x)$ are also posynomials.

Example: 2-Stage Op-Amp Design

• Differential-pair input stage, frequency-compensation network, output-stage driver.

Single-Objective GP

- I. Maximize UGBW (= minimize 1/UGBW)
- II. Maximize DCgain (= minimize 1/DCgain)
- III. Minimize Noise
- IV. Minimize Power subject to
- Symmetry and matching: M1=M2, M3=M4
- Limit on device sizes: *W* ≥ *Wmin*, *L* ≥ *Lmin*
- Limit on chip area: *A* ≤ *Amax*
- Systematic input offset voltage
- Current ratio equalities: $I(M5)\alpha I(M8)$, $I(M7)\alpha I(M8)$, $I(M1)\alpha I(M5)$
- Bias conditions: Vgs-Vt ≤ Vds
- Gate overdrive voltage: Vgs-Vt ≥ Vod,min

- Limit on power consumption: P ≤ Pmax
- Open-loop DC gain
- Unity-gain bandwidth
- Phase-margin
- Slew-rate
- Common-mode rejection ratio
- Power-supply rejection ratio
- Input-referred noise

GP Implementation

- Total of 46 constraints expressed by posynomials and monomials.
- Total of 19 design variables (W,L of transistors, R,C of frequency compensation network, and bias current).
- Optimization run time < 2 sec for each objective.

Optimization Results (SOGP)

Performance Measure	Specification	Design Objective			
		Max. UGBW	Max. DC gain	Min. noise	Min. power
Device length (μm)	≥ 0.8	0.8 (min)	0.8 (min)	0.8 (min)	0.8 (min)
Device width (μm)	≥ 2.0	2.0 (min)	2.0 (min)	2.0 (min)	2.0 (min)
Area (μm²)	≤ 10000	7283	9162	10000	7218
Capacitance size (pF)	$0.1 \leq C \leq 2000$	2.68	2.7	3.86	2.68
Load capacitance (pF)	3	3	3	3	3
Common-mode input range (V)	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd
Output voltage range (V)	[0.1,0.9]Vdd	[0.028,0.91]Vd d	[0.018,0.9]Vdd	[0.026,0.904]V dd	[0.024,0.908]V dd
Power (mW)	≤ 5	5	5	5	3.9
DC gain (dB)	≥ 80	89.4	95.8	91.7	91.5
Unity-gain BW (MHz)	≥ 80	90.1	80	80	80
Phase margin (°)	≥ 60	60	60	60	60
Slew rate (V/μs)	≥ 10	87.2	53.5	61.4	68.5
CMRR (dB)	≥ 60	92.6	99.1	95	94.7
Neg. PSRR (dB)	≥ 80	98.5	105	100.9	100.6
Pos. PSRR (dB)	≥ 80	118.5	124.9	120.8	120.6
Input-referred noise, @1KHz (nV/√Hz)	≤ 300	300	244.7	209 e for National Science and	300 Technology Capability

Multi-Objective GP

- In contrast to single-objective formulation, several desired objectives can be optimized simultaneously.
- Weight factors can be assigned to each objective to quantify its significance.
- Normalization is needed to account for the difference in units of individual objectives.
- Normalization factors can be readily determined by performing a single-objective optimization excluding the other objectives.

Multi-Objective formulation

Weighted-sum formulation

Minimize
$$\left\{ w_1 \cdot \left(\frac{1}{BW_{norm}} \right) + w_2 \cdot \left(\frac{1}{Gain_{norm}} \right) + w_3 \cdot Noise_{norm} + w_4 \cdot Power_{norm} \right\}$$

Product formulation

Minimize
$$\left\{ \left(\frac{1}{BW} \right) \cdot \left(\frac{1}{Gain} \right) \cdot Noise \cdot Power \right\}$$

Proposed Algorithm for MOGP (weighted sum)

A Driving Force for National Science and Technology Capability

NECTEC⁷

Optimization Results (MOGP)

Performance Measure	Specification	Weighted sum	Weighted sum	Weighted sum	Product
		w=[1/4, 1/4, 1/4, 1/4]	w=[1/6, <mark>1/2</mark> , 1/6, 1/6]	w=[1/6, 1/6, <mark>1/2</mark> , 1/6]	
Device length (μm)	≥ 0.8	0.8 (min)	0.8 (min)	0.8 (min)	0.8 (min)
Device width (μm)	≥ 2.0	2.0 (min)	2.0 (min)	2.0 (min)	2.0 (min)
Area (μm²)	≤ 10000	10000	10000	10000	10000
Capacitance size (pF)	$0.1 \leq C \leq 2000$	3.3	3.2	3.6	3.3
Load capacitance (pF)	3	3	3	3	3
Common-mode input range (V)	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd
Output voltage range (V)	[0.1,0.9]Vdd	[0.02,0.9]Vdd	[0.02,0.9]Vdd	[0.02,0.9]Vdd	[0.02,0.9]Vdd
Power (mW)	≤ 5	5	5	5	5
DC gain (dB)	≥ 80	95.5	95.7	94	95.5
Unity-gain BW (MHz)	≥ 80	80	80	80	80
Phase margin (°)	≥ 60	60	60	60	60
Slew rate (V/μs)	≥ 10	51	52.3	54.4	51
CMRR (dB)	≥ 60	98.7	99	97.2	98.8
Neg. PSRR (dB)	≥ 80	104.6	104.8	103.1	104.7
Pos. PSRR (dB)	≥ 80	124.6	124.8	123.1	124.6
Input-referred noise, @1KHz (nV/√Hz)	≤ 300	224.6	228.9 A Driving Force	214.3 e for National Science and	225 Technology Capability

Pareto Front (Trade-Off Curve)

MOGP with Weight Optimization

 Arbitrary weight assignment can lead to a solution far from "ideal multi-objective optimum," defined as the optimum achieved when each individual objectives reaches its own optimum simultaneously, i.e.

$$f_{wt-sum} = \frac{w_1}{NF_1} f_1 + \frac{w_2}{NF_2} f_2 + \dots + \frac{w_n}{NF_n} f_n$$

When $f_i = NF_i$

$$f_{wt-sum,ideal} = w_1 + w_2 + \cdots + w_n$$

Solving MOGP with Weight Optimization

$$f_{wt-sum} = \frac{w_1}{NF_1} f_1 + \frac{w_2}{NF_2} f_2 + \dots + \frac{w_n}{NF_n} f_n$$

- Use the same algorithm as fixed-weight MOGP but, now, w's are treated as additional variables.
- Need to introduce additional constraint on weights.

Geometric-Mean Constraint

 To take into account of weight factors into MOGP, we introduce an additional constraint on weight factors, ie. the geometric mean of the weight factors equal unity as follows:

$$(w_1 \cdot w_2 \cdot \cdots \cdot w_n)^{1/n} = 1$$

• The constraint is necessary to obtain a valid solution, similar to the unity-arithmetic-mean constraint imposed in the fixed, arbitrarily-assigned weights. Geometric mean is chosen, instead, b/c of its monomial form.

Optimization Results (MOGP w/ Weight Optimization)

Performance Measure	Specification	Weighted sum w=[1/4, 1/4, 1/4, 1/4]	Optimized-weight sum w _{opt} =[0.9, 2.1, 0.8, 0.7]
Device length (μm)	≥ 0.8	0.8 (min)	0.8 (min)
Device width (μm)	≥ 2.0	2.0 (min)	2.0 (min)
Area (μm²)	≤ 40000	40000	40000
Capacitance size (pF)	0.1 ≤ C ≤ 2000	15	14
Load capacitance (pF)	3	3	3
Common-mode input range (V)	includes 0.5Vdd	includes 0.5Vdd	includes 0.5Vdd
Output voltage range (V)	[0.1,0.9]Vdd	[0.01,0.9]Vdd	[0.01,0.9]Vdd
Power (mW)	≤ 20	6.8	7
DC gain (dB)	≥ 80	102	104
Unity-gain BW (MHz)	≥ 60	60	60
Phase margin (°)	≥ 60	60	60
Slew rate (V/μs)	≥ 1	25.4	23
CMRR (dB)	≥ 60	105	107
Neg. PSRR (dB)	≥ 80	111	113
Pos. PSRR (dB)	≥ 80	131	133
Input-referred noise, @1KHz (nV/√Hz)	≤ 300	95 A Driving Force for Nati	101 cnal Science and Technology Capab

Relative deviation vs BWmin

Fixed W's (m=1) vs Optimized W's

Bandwidth	Fixed equal weights	Optimized weights	Difference
60 MHz	2.4 x	2.1 x	14%
40 MHz	3.0 x	2.4 x	25%
20 MHz	4.3 x	2.7 x	59%

 $\frac{f_{wt \ sum}}{f_{wt \ sum,ideal}} =$

Phase margin	Fixed equal weights	Optimized weights	Difference
60 deg	2.4 x	2.1 x	14%
40 deg	3.2 x	2.4 x	33%
20 deg	3.8 x	2.6 x	46%

Conclusions

- Geometric program can be used to performed multiobjective design optimization.
- Proposed algorithm for MOGP has been presented.
- Contrary to conventional MOGP, weight factors can be taken into the optimization, yielding a solution closer to the ideal multi-objective optimum than the fixed, arbitrarily-assigned weights.