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1. The Internet of Things (IoT) and Big Data 

https://www.mongodb.com/presentations/ 

 http://www.smartdatacollective.com 

 
https://machinaresearch.com/ 

https://www.mongodb.com/presentations/
http://www.smartdatacollective.com/
https://machinaresearch.com/
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IoT and Big Data (2/10) 

• Any application 

• Any network 

• Any service 

https://techzine.alcatel-lucent.com/ 

 

https://techzine.alcatel-lucent.com/
https://techzine.alcatel-lucent.com/
https://techzine.alcatel-lucent.com/
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Source: http://www.ibmbigdatahub.com/infographic/four-vs-big-data 

 

Big Data: the Four V’s (3/10) 

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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Data Representation (4/10) 

Re.: H. G. Miller and P. Mork, “From Data to Decisions: A Value Chain for Big Data,” It Pro.,  

v. 15, no. 1, pp. 57–59, 2013. 

 

Re.: P. Barnaghi, A. Sheth, and C. Henson, "From Data to Actionable Knowledge:  

Big Data Challenges in the Web of Things [Guest Editors' Introduction]," Intelligent Systems,  

IEEE, v.28, no.6, pp.6,11, Nov.-Dec. 2013 
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From M2M to IoT and Big Data (5/10) 

https://www.mongodb.com/presentations/ 

 
https://machinaresearch.com/ 

https://www.mongodb.com/presentations/
https://machinaresearch.com/


Big Data Management (6/10) 

o From important competency to a critical 
differentiation: From Volume & Variety to Velocity. 
 

o Big Data Technology: Operational vs. Analytical. 
o Operational features: Real-time & interactive 

intelligence – low latency, on-line  capture. 
o Analytical features: Complex analysis – high 

throughput. 

 
o Combine Operational and Analytical technologies. 

 
 Generic/global fast solutions rather that 

application specific solutions. 
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http://www.mongodb.com 

http://www.mongodb.com/


Data Streaming: Volume, Variety and Velocity(*) (7/10) 

o Support a wide variety of data(*) 
o Focus on agility and flexibility rather than 

conformity(*) 
 

 Domain Independent framework: builds 
the foundation to unsupervised 
classification algorithms. 
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Source: (*) http: 

//www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/ 

http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/


Data Streaming: Volume, Variety and Velocity(*) (8/10) 

o Foster rapid data consumption(*) 
o Provide prompt access to relevant 

information(*) 
o Make pervasive use of predictive analytics 

a priority (*). 
 

 Real-time/on-line time series classification 
problems. 
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Source: (*) http: 

//www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/ 

http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
http://www-935.ibm.com/services/us/gbs/thoughtleadership/2014analytics/
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Applying the Internet of Things (9/11) 

https://www.gov.uk 

 

• Transport 

• Energy 

• Healthcare 

• Agriculture 

• Buildings 

https://www.gov.uk/


j.barria@imperial.ac.uk 

IoT Relevant Research areas (10/10) 

(D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, applications  

and research challenges,” Ad Hoc Netw., vol. 10, no. 7, pp. 1497–1516, 2012.) 



2. On-line Time Series Classification Framework  

One important on-line Big Data application is: 
Real-time monitoring & anomaly detection. 
 

• Health condition monitoring as well as anomaly 
detection are classification problems. 

• They are time series classification problems 
because they involve the time element (e.g. 
short-term and long-term condition changes). 

• Pattern recognition frameworks belongs to the 
field of classification methods. 
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2.1. The Pattern Recognition (PR) Approaches (1/5) 

• Composed of two phases: 
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Phase 1 Phase 2 

• Extracting 
appropriate 
properties or 
features. 

• Mapping the 
features to a 
particular class. 

 

Representation 

 

Classification 



Different Data type: Different Applications (2/5) 

 
 
 
 
 
 
 

For the case of time series data:  
• A major concern is finding appropriate pattern 

representations. 
• Most of the approaches treat time series as static data 

(hence they do not offer suitable representations). 
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Dynamic Data 

Static Data 

- Character 

Recognition 

- Image Retrieval 

- Anomaly 
Detection* - Medical Signal 

Classification 
(ECG, EEG) 

- Speech 
Recognition 

- Iris Recognition 

- Data Streams 
Classification 

Condition  

Monitoring  

with Sensor  

Data - Anomaly 
Detection 



Pattern Recognition Paradigms (3/5) 
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Statistical 

Feature 

Vectors 

Single 
entities 

Decision-
theoretic Structural 

Syntax 

Primitives 

Subpatterns 



Pattern Recognition Paradigms (4/5) 
 

Statistical: 
• Patterns treated as single entities and described 

by numerical feature vectors. 
• The classification involves the partition of the 

feature space into regions. 
 
Structural: 
• Patterns treated as combination of multiple 

entities and described by its topological relations. 
• The classification involves matching the structural 

representation according to a syntax. 
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Proposed Approach: New PR  Representation Framework (5/5) 
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2.2. Robust Data Representation (1/2) 

Class 2 

Class 1 

C 

E-C 

E 
High dimensional  

Space 

Class 1 Time Series 

PDF PDF 

Class 2 Time Series 

E = E-C  C 

*E-C   C 

C = Normal  

E-C = Anomalous 
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Structural Generative Description (SGD):  

The Proposed Approach (2/2) 

 
• Domain independent : which makes the 

framework suitable for a wide variety of 
applications. 
 

• It is an on-line / real-time approach. 
 

• Constructs robust time series represenations. 
 

• Based on time series being treated as stochastic 
processes. 
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2.3. Novel Anomaly Detection Approach (1/2) 

 

Multi-resolution 

Decomposition 

 

 

Structural 

Generative  

Description 

 

Statistical Discriminative 

Classification/Clustering Sensed 
Environment /  

Observed 
System 

Anomalous Condition 
Detection 
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Real-time /on-line  

data stream 



Implementation: Centralised (A) vs Distributed (B) (2/2) 

Sensor Station 

Raw signals 

Sensor Station 

(A) 

(B) 
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3. Real-time Monitoring: Applications 

 On-line time series classification framework and its 
applications: 
 
3.1. Biometric Recognition and Forensics, 
 

3.2.i. Smart Infrastructures Monitoring, 
3.2.ii. Machine/motor Health Conditioning Monitoring, 
 

3.3. Distributed Charging of EVs, 
 

3.4.i. Transportation Networks Monitoring, 
3.4.ii. Environmental (pollution) Monitoring. 

j.barria@imperial.ac.uk 
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3.1. Applying the Internet of Things: Healthcare 

https://www.gov.uk 

 

• Healthcare 

 

Prevention and early identification, 

• Research, 

• Data security and ownership, 

• Hardware security and interoperability, 

• Change management. 

https://www.gov.uk/


Biometric Recognition and Forensics (1/2) 
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Biometric Recognition and Forensics (2/2) 
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3.2. Applying the Internet of Things: Buildings 

https://www.gov.uk 

 

• Buildings 

 

Optimising design and minimising 
costs, 

• Increasing comfort, 

Security and safety. 

 

https://www.gov.uk/


I. Smart Infrastructures: SI (1/3) 

• Real time assessment of the deterioration of civil 
infrastructure (i.e. bridges, tunnels, water pipelines). 

• Framework based on WSN,  condition monitoring, 
and anomaly detection. 

 

 

 

 

 

 

 

• Proactive classification into e.g. adequate condition, 
maintenance required, and in need of replacement.  
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(http://www.ni.com/newsletter/52418/en/) 

 

http://www.ni.com/newsletter/52418/en/


SI: Machine Health Conditioning Monitoring (2/3) 
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(http://www.eecs.case.edu/laboratory/bearing/) 

  

 

http://www.eecs.case.edu/laboratory/bearing/
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SI: Sensor Network Resilience: Design (3/3) 

animations/Motes2.avi
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3.3. Applying the Internet of Things: Energy 

https://www.gov.uk 

 

• Energy 

 

• Reducing energy demand, 

Managing energy patterns, 

• Driving innovation, 

• Increased energy demand, 

• Security and standards, 

• Variable access. 

https://www.gov.uk/


EVs participation for Frequency Regulation Service (1/3) 
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Power Distribution Network Scenario 

• Two mechanism to facilitate 
EVs participation in 
operational aspects of a smart 
grid. 

• Frequency regulation, 

• Congestion avoidance. 

 

 

• The solution needs to be 
distributed and dynamic. 



Frequency Regulation Service (2/3) 
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Distribution 
Network  . 

Charging socket  

agents 
EV agent 

Other  

Non-EV  

loads 

Time varying  

Generation Capacity 

)(tp j

)(tpi

)(tw j

)(twi

EV agent 

EV agent 

EV agent 

EV agent 

Charging socket  

agents 

Recharging rate at which energy is 
accumulating in the i-th EV battery 
(kw) 

 

i-th EV’s payment rate (paid by EV) 
for recharging ($/h) 

)(tpi

)(twi

)()( Optimal twtp ii 



Convergence of Recharging rates of 1000 EVs (3/3) 
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Note: The initial recharging rates        are randomly assigned. 

)()( twtp ii 

)(tpi
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3.4. Applying the Internet of Things: Transport 

https://www.gov.uk 

 

• Transport 

 

• Passenger journeys, 

Increased safety, 

• Transporting goods, 

• Security, reliability and regulation. 

 

https://www.gov.uk/


I. Transportation Networks: ITS (1/2) 
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• Management Tools for Safe Mobility 

 
• Classification of Vehicular Traffic 

Anomalies 
 

• Spatial Inference of Traffic Conditions  
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Transport vehicles: ITS (2/2) 

https://www.mongodb.com/presentations/ 

 
https://machinaresearch.com/ 

https://www.mongodb.com/presentations/
https://machinaresearch.com/


ITS: Distributed Classification of Vehicular Traffic 

Anomalies (1/2) 
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ITS: Spatial Inference of Traffic Transitions (2/2) 
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II. Real time Environmental Monitoring (1/3) 

 

• Monitoring of vehicle(s) behaviour and real-time 
construction of environmental pollution patterns 
map. 

 

• Intelligent monitoring systems for real-time 
characterisation and construction of pollution 
level maps. 
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Real time Construction of Pollutant levels (pdf) (2/3) 

animations/vehicle1.avi
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Participatory Sensing Mobility Models (3/3) 

  
• Urban Environment. 

 
• Mission-oriented, 

participatory sensor 
network deployment. 
 

• Combining fixed and 
mobile sensor nodes. 
 

animations/test4.mp4
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https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it 

 

Interoperability across networks: new traffic patterns 

• Any service 

• Any application 

• Any network 

• Applications 

• Connectivity 

• Devices 

• Sensors 

https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
https://techzine.alcatel-lucent.com/iot-network-can-make-it-or-break-it
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3.5. Applying the Internet of Things: Agriculture 

https://www.gov.uk 

 

• Agriculture 

 

• Maximising yield, 

• Improving food traceability, 

• Tackling environmental challenges, 

• Incompatibility, 

• Lack of infrastructure, 

• Technical expertise. 

https://www.gov.uk/
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4. Imperial College London, July 2014  

https://www.imperial.ac.uk 

 

https://www.imperial.ac.uk/


5. Final Remarks 

From competency to a critical differentiation:  
From Volume & Variety to Velocity. 

 
o Big Data Technology: Operational vs. Analytical. 
o Combine Operational and Analytical technologies. 
o Generic/global fast solutions rather that 

application specific solutions. 
 

 Domain Independent framework. 
 Real-time time series classification problems. 
 Foundation to unsupervised classification 

algorithms. 
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