

The Petroleum and Petrochemical College, Chulalongkorn University

Development of blended PDMS/PU biomimetic microstructure for marine application

Presented by

Asst. Prof. Manit Nithitanakul, Ph.D.

Introduction

Biofouling Process

The Global Cost of Corrosion

\$2.5 trillion

Ships: The total cost of corrosion to the U.S. shipping industry is estimated at \$2.7 billion. This cost is divided into costs associated with new construction (\$1.1 billion), with maintenance and repairs (\$0.8 billion), and with corrosion-related downtime (\$0.8 billion).

Biofouling on ship resistance and powering

Loss of
Time, Money and
Energy

Predictions of the change in required shaft power with average coating roughness (Rt₅₀) and fouling conditions at a speed of 15 knots

Ref: Schultz, 2007

Description	Rt ₅₀ (µm)	Increase in power at 15 kn
Hydraulically smooth surface	0	-
Typical as applied AF coating	150	2%
Deteriorated coating or light slime	300	11%
Heavy slime	600	21%
Small calcareous fouling or weed	1000	35%
Medium calcareous fouling	3000	54%
Heavy calcareous fouling	10000	86%_

- Imposex
- Malformations
- Changes in the normal biochemical and physiologic aspects

Ref: Ghais and Bhardwaj, 2019

→ PDMS

Polydimethylsiloxane

but

Poor Mechanical properties

Processing method Easy to process

Processing time Less time

How to improve polymer properties

Processing method

Difficult to process

More time

Synthesis

Polymer Blend

Polymer blends are physical mixtures of two or more polymers with/without any chemical bonding between them

Advantages:

- Low cost
- Improve mechanical properties
- Improve thermal properties
- Processability

Polyurethane: PU

- Good Mechanical properties
- Good Thermal properties
- Nontoxic
- Durability to coating
- Resistance UV radiation

Experimental

Preparation of PDMS/PU Blend

Preparation

Prepared pure
Polydimethysiloxane
(PDMS) and pure
polyurethane (PU)
part A/B using
magnetic stirrer at
100 rpm

Blending

PDMS was blended with PU (vary PU content), using magnetic stirrer at 100 rpm

Degasing

PDMS/PU blend was degassed using a vacuum pump before curing

Cured

PDMS/PU blend was cured in an oven at 60°C

SEM-EDX

Element	PDM	S	PU		₽DN	/IS/PU Blend
С	24.30	38.82	66.05	72.16	53.47	68.58
0	18.35	22.00	33.95	27.84	14.24	13.72
Si	57.35	39.18	0	0	32.29	1 <i>7.7</i> 1
	Weight%	Atomic	Weight%	Atomic	Weight%	Atomic

In the minor phase which is PU, it was observed that carbon weight % was decreased from 66.05 to 53.47 and silicon weight % on the surface of the samples increased from 0 to 32.29%. The results indicated that PU was dispersed in the PDMS/PU blend.

Contact Angle

The hydrophobicity of the surface of blend PDMS/PU polymers' film was investigated by water contact angle measurements (WCA $> 90^{\circ}$).

Barnacle Attachment on PDMS/PU

PDMS/PU samples were tested in sea water at Aquatic Resources Research Institute, CU

Barnacle attachment on PDMS/PU

PDMS/PU samples were tested in sea water at Aquatic Resources Research Institute, CU

/PU PDWS/ OU attachment Barnacle

2 Week

4 Week

8 Week

2 Week

8 Week

4 Week

Barnacle attachment on PDMS/PU

Size and % Barnacle counts on PDMS/PU surface after 4 weeks

Barnacle size	Wide (cm.)	Height (cm.)
Samples		
SS400	0.3	0.6
PU	0.5	0.8
PDMS/PU 95:5	0.3	0.5
PDMS/PU 5:95	0.4	0.9
PDMS	0.3	0.5

- Shore Side: Samples were placed in the sea facing the shore
 - Sea Side: Samples were placed in the sea facing away from the shore

Adhesive force of barnacle on PDMS/PU surface after 4 weeks

Sample	Force (N)
SS400	32.9
PU	20.6
PDMS/PU 95:5	20.6
PDMS/PU 5:95	4.9
PDMS	3.2

Size and % Barnacle counts on PDMS/PU surface after 8 weeks

Barnacle size	Wide (cm.)	Height (cm.)
Samples		
SS400	0.4	0.7
PU	0.5	0.9
PDMS/PU 95:5	0.7	0.9
PDMS/PU 5:95	0.5	0.8
PDMS	0.5	0.7

Shore Side: Samples were placed in the sea facing the shore

Sea Side : Samples were placed in the sea facing away from the shore

Adhesive force of barnacles on PDMS/PU surface after 8 weeks

Sample	Force (N)
SS400	45.9
PU	39.2
PDMS/PU 95:5	33.8
PDMS/PU 5:95	8
PDMS	9.6

Conclusions

PDMS/PU blend with soft lithography process gave contact angle up to 128.8°± 1.6°

PDMS/PU blend reduced fouling attraction around 80-90% compared with surface of SS400 metal

PDMS/PU blend has lower barnacle adhesive force than SS400 metal up to 83% in 8 weeks

Dr. Nithi

Atthi

The Petroleum and Petrochemical College, Chulalongkorn University

Nithitanakul **∞** ⊌ f

Asst. Prof. Manit

Charoenpongpool **■ y** f

Jirasuta Chungprempree **⊠ y** f

Punika Ratchachittapong

Mr. Witsaroot

Sripumkhai

Thank You

FOR YOUR ATTENTION! ANY QUESTIONS?