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Before and after



The numerical model is designed for water systems comprising large 

canal networks. The mathematical formulation is based on the analogy of 

a porous medium characterized by a permeability depending on

parameters and directions of the canal network. We combine the 

"continuous medium approach” with the non-negative stable 

numerical algorithm.

We simulate the flood evolution in the lower Chao-Praya river basin 

(located in the eastern areas of Bangkok) and demonstrate the 

computational e efficiency of the proposed method. 



Flood flow

Rainfall

Overland Flow
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Diffusion wave approach

ht = div(D grad h) + R,

h=h(x,y,t) the free surface level, 

h=h+z, h=h(x,y,t)>0 the flow depth,

z=z(x,y) the ground elevation,

D=D(x,y,h) the “diffusion” 

coefficient,  R=R(x,y,t,h) the source 

R(x,y,t,h)

Pumping, 

evaporation

h(x,y,t)

R(x,y,t,h)

Unsaturated zone

Ground water table
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Flood models based on the shallow water equations 

Separate treatment of the river and the 

surface flows/1D Saint Venant + 2D 

shallow water equations.

-Sophisticated mathematical  

formulation employing the internal 

boundary conditions, the confluence 

conditions, etc.  

-Complicated data structures

-Tedious iterative techniques  to couple 

the river and the surface flow

-Special control of possible negative 

components of the solution 

Uniform treatment of the river and 

the surface flows/2D shallow water 

equations for both the river and 

the surface flows

-High spatial resolution required in 

the regions nearby the river

-Special control of possible 

negative components of the solution 

in the regions with the small water 

depth.



Separate treatment of the river and the surface 

flows

Boundary conditions for floodplain

Boundary condition 

for the river flow Confluence  conditions

Boundary condition

(sea level) 

Rainfall 
Evaporation

Flood

Exchange between river 

and overland flow
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Canals orthogonal to the y-axis

Uniform treatment of the river/overland flow

Cross-sectional area of the flow is 

characterized by

h h+z0 the surface flow level

h = h-Z the surface flow depth

hi- zi the water depth for canals of a 

group i orthogonal to the y-axis

my
i- number of canals of a group i 

orthogonal to the y-axis

Wy
i(hi)=wi(hi)/Dy the vertical cross-

sectional area of the canals of a group 

i orthogonal to the y-axis

hDy the cross-sectional area of the 

surface flow
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“Channelized” cell of the 2D grid
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The modified diffusion wave equation is then given by 
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p/DL, L=x or L=y, w
L

p denotes the vertical cross-sectional area of the 

canals of the group p with an average bottom level zp, a cross-sectional area wp  

along the L direction. A number of canals at the point (x,y) is denoted by mp. 

We recall that hh(x,y,t) denotes the water level, h=h+Z, h=h(x,y,t) the water 

depth. Z=Z(x,y) is the ground level 

river
surface



The diffusion coefficients corresponding to the canal and the overland flow are  
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where the canal flow and the flood flow depth hp and hS are  

respectively represented by  
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5000 1000 x, m

h, m

5000 1000

Development of  instability for a conventional numerical 

scheme

Flood
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Singularity when h=0

Even small violations of the 

positivity of the water depth induce 

unwanted oscillations and instability. 

Further analysis of non-linear 

degenerate parabolic systems shows 

that under certain conditions the 

equations generate breaking of 

waves and the shock waves.



1) Explicit scheme ?

2) Implicit scheme ?

3) Cut the  negative depth ?  

4) “Wet/dry cells”  ?

5) Moving boundary ?     

6) Smoothing ?

Numerical

Approach

??????

Development of the Numerical Scheme



Non negative numerical algorithm.1D illustration
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The key idea is based on a first-order approximation of the “hyperbolic” (transport) 

terms by directed differences combined with the consistent right-hand (left-hand) 

approximations for the diffusion terms
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1D Non negative numerical algorithm
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2D Non negative numerical algorithm



1. The flow depth h is non-negative. 

2. The scheme is a discrete analogy of the mass 

conservation law. 

3. If the diffusion wave equation has a constant solution 

then it is the exact solution of the proposed finite difference 

scheme.

4. The non-negative algorithm converges.

5. Unconditional stability.

Properties of the non negative algorithm

Makhanov, S.S., S. Vannakrairojn, and E.J. Vanderperre (1999). A two-dimensional numerical model of 

flooding in East-Bangkok, Journal of Hydraulic Engineering, Vol. 25, No. 4 

Makhanov, S.S. and A.Yu. Semenov (2003). Six numerical schemes for parabolic initial boundary value 

problems with a priory bounded solution, Applied Numerical Mathematics, Vol. 46, pp. 331-351.



Wave in 

Z,m

x,km

y,km

0.0

5.0
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Wave out 

Surface wave propagation. Ground elevations.
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Surface wave propagation. Water Depth
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Efficiency of the algorithm. Average number of iterations.

Non-

negative

algorithm

  Implicit

2-d order

Scheme

Explicit

2-d order

Scheme

Time

step

Spatial

step

11 7/(-) 7 10000 500

21 Diverges 34 50000 500

22 Diverges 67 100000 500

23 Diverges 334 500000 500

14 12/(-) 14 10000 250

25 Diverges 67 50000 250

21 Diverges 134 100000 250

27 Diverges 667 500000 250

20 Diverges 27 10000 125

21 Diverges 134 50000 125

26 Diverges 267 100000 125

30 Diverges 1335 500000 125
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Overland flow 

River flow 

Flood Modeling
Rainfall

Pumping
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The eastern areas of Bangkok are characterized by a high density of

irrigation networks located in the Chao-Phraya river delta. During the hot

season (March-May), the eastern areas are preserved for water

conservation. During the rainy season, the extremely low gradient of

ground elevations combined with a heavy rainfall(1200-1500 mm) and a

widening of the Chao-Phraya river, causes annual flooding in almost all

parts of this province. The elevations of the western part are ranging from 0

to 0.5 m (with regard to the South-China sea) whereas the average level of

the ground elevations is about 1.5 m. The main flood protection measures,

applied to match the impact of the wet season in this area, are based on the

construction of dikes, dams and pumping stations located at the boundary.

The numerical modeling of the huge canal network in the delta of the Chao-

Phraya river , is a formidable task. First of all, we have to perform an input

by establishing a suitable link with an appropriate GIS. Secondly, the input

data is incomplete and far from reliable. Moreover, the data is frequently

fluctuating due to random activities of small operating farms. Finally, the

water system is characterized by: 1) Complex geometries of the main and

the magistrate canals. 2) High density of the irrigation network. 3)

Incomplete data. 4) Wet and dry zones with irregular, time dependent

boundaries. Therefore, an implementation of the conventional models,

especially for a scheme comprising small canals, tends towards extremely

time consuming and costly computations



Gulf of Thailand
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Gulf of Thailand
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Pumping, drainage:

17 106 m3/day

Pumping, drainage:

7 106 m3/day
Pumping, drainage:

4 106 m3/day

Drainage:

1.4 106 m3/day

Evaporation:

1-3 mm/day 

Elevations and   

water balance in the 

East of  Bangkok

Boundary of 

the region

Critical rainfall :140-250 106  m 3/(2 

days)



Calibration by the Manning’s coefficients

Max norm
L2 norm

River Overland flow



Bangkok

Chachoeng-

Sao 

Ladkrabang

Gulf of Thailand

-flooded areas

Contour lines of the 

flood     depth, 

September 5,1990
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Bangkok

Chachoeng-Sao 

Ladkrabang

Gulf of Thailand

Contour lines of the 

flood     depth, 

September 10,1990
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Bangkok

Chachoeng-

Sao 

Ladkrabang

Gulf of Thailand
- flooded areas

Contour lines of the 

flood     depth, 

September 25,1990
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Legend

--measurement point

S17

Verification  by 

the Mean Error



S1-the non-negative techniques

S2 -symmetric 

S12 - the hybrid: S1/S2

S3-standard implicit  

S4 -”cut a negative depth-

scheme” 

S -the standard explicit

Comparison with other schemes

Maximum/average number of iterations

S1 S2 S12 S3 S4  S ,day

11/1.2 20/7(-) 10/1.1 27/8(-) 26/10(-)    5 0.01

12/1.3 Diverges 15/1.2 Diverges Diverges    48 0.1

18/2.5 Diverges 16/2.2 Diverges Diverges   471 1

21/4.1 Diverges 19/3.2 Diverges Diverges 1440 2



Water flow 

in the unsaturated zone 

of the soil

Overland flow 

River flow 

Impact of the 

unsaturated Zone

Rainfall

Pumping
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q=q(x,z,t) is the soil moisture concentration, 

K=K(x,z,q) the hydraulic conductivity , 

D=D(x,z,q) the soil water diffusivity,

y=y(x,z,t,q ) the capillary potential,

R=R(x,z,t, q ) the source (sink). 

qmin, qmax the residual moisture concentration and the 

porosity. 
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Numerical solution of  Richard’s equation. 

Development of  instability for the 

conventional scheme
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Numerical solution of  Richard’s equation. 

Development of  instability for the conventional 

scheme,
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Step 1. Solution with with respect to h=q -qmin

Numerical Algorithm for Richard’s equation, 1D 

illustration
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Step 2. Solution with with respect to m=qmax -q

Step 3. Correction
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(guarantees the identity nmqmax-qmin ).



1.  The numerical solution satisfies 

Properties of the  algorithm

max

1

min

~
qqq  n

m

2.  The algorithm converges 

3. The scheme is a discrete analogy of the mass 

conservation law. 

Makhanov, S.S. and A.Yu. Semenov (2003). Six numerical schemes for parabolic 

initial boundary value problems with a priory bounded solution, Applied Numerical 

Mathematics, Vol. 46, pp. 331-351.
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(1)-qmin, (2)- qmax , (3) q (z, t), t =0.25h, (4) q (z, t), t =0.5h, (5)- t 

=2h, (6)- t =4h, (7)  t =6 h .
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Saturated zone

Rainfall

Numerical solution of the infiltration problem



S1 S2 S
   sec   D cm

8/6 4/3(-) 0.11 10 10

8/7 5/4(-) 0.22 10 5

13/9 13/11 0.43 10 2.5

20/12 20/12 0.88 10 1.25

10/9 9/7(-) 0.55 50 10

13/11 Diverges 1.1 50 5

20/13 Diverges 2.15 50 2.5

28/21 Diverges 4.4 50 1.25

22/16 Diverges 11 1000 10

30/21 Diverges 22 1000 5

46/27 Diverges 44 1000 2.5

72/30 Diverges 88 1000 1.25

46/20 Diverges 110 10000 10

65/28 Diverges 220 10000 5

100/46 Diverges 430 10000 2.5

154/65 Diverges 880 10000 1.25

Efficiency of the proposed algorithm
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Saturation wave. The numerical solution  

in the case of randomly perturbed bounds



S1 S2 S
   sec   D cm

12/8 3/2(-) 0.05 10 10

18/10 5/3(-) 0.1 10 5

26/12 7/5 0.2 10 2.5

36/20 14/7 0.4 10 1.25

18/10 10/6(-) 0.25 50 10

19/11 Diverges 0.5 50 5

46/14 Diverges 1.1 50 2.5

48/22 Diverges 2.2 50 1.25

30/10 Diverges 4.7 1000 10

44/19 Diverges 8.3 1000 5

64/21 Diverges 16.3 1000 2.5

98/25 Diverges 32.6 1000 1.25

40/14 Diverges 41 10000 10

58/18 Diverges 81 10000 5

90/25 Diverges 163 10000 2.5

138/30 Diverges 326 10000 1.25

Efficiency of the proposed algorithm



Conclusions

1. We proposed and analyzed a new family of unconditionally stable 

numerical  algorithms to solve parabolic boundary value problems 

endowed with constraints.

2. The methods are applicable to simulate and overland flows and 

unsaturated porous medium flows. 

3. The methods demonstrate an overall priority with regard to 

conventional schems when the solution approaches  the prescribed 

boundaries. 

4. The methods applied to real world applications provide uniform 

treatment of the "dry" and "wet" cells 

5.  The methods are in particular suitable to simulate  the water systems 

comprising large canal networks.


