

Geoinformatics Center Established in 1999 (Self Funded)

Activities of the GIC/AIT

- Projects and Consulting Works
- Training Programs, primarily in Asia and the Pacific
- ➤ QZSS GPS Monitoring Station and GNSS Research
- Emergency Disaster Response Mapping
 - Rapid Mapping Support for Sentinel Asia & IDC
 - Applied Research (DRR, Poverty, Environment, etc.)
- > Exchange Programs: Students, Researchers, Experts
- Information Sharing and Publications: Journal, Conference, Reports, Manuals etc.

A Recent Disaster Response Activity

http://arcg.is/2r9Lw5m

Executed Landslide projects

- Sri Lanka
- Indonesia
- Philippines
- Pakistan
- Vietnam
- Lao PDR
- Thailand
- Tajikistan
- India

Presentation Content

- Landslide study in Sri Lanka using SINMAP (deterministic modeling)
- A ongoing Project: Statistical modeling

MODELLING OF RAIN TRIGGERED LANDSLIDE USING SINMAP: A CASE STUDY IN RATHNAPURA AREA, SRI LANKA

Introduction

Landslide Locations

- 1947 to 2002

Source: SLUMDMP

 Landslide is very common hazard in hilly terrains in Sri Lanka

Introduction ... cond.

- Landslide is very common hazard in hilly terrains in Sri Lanka
- Landslide hazard analysis
 - Very costly and time consuming task
 - Requires large number of input parameters
 - Technical knowledge and techniques
- Solution.....?
 - RS/GIS based slope stability models
 - GIS is a powerful tool for handling spatial data (topography, geology, rainfall, landuse)

Objectives

- Main objective
 - Study the applicability of GIS based slope stability models
- Specific objectives
 - Landslide hazard map using SINMAP model
 - Comparison with existing NBRO's landslide hazard map
 - Rainfall scenarios with the object of arriving at rainfall threshold for steady state condition

Study area

Causal Factors

Changes in the factor of safety with time (Popescu, 2005)

Flow chart - Stability INdex MAPping: SINMAP

Parameterization of SINMAP model

Υ.																		
	Region	Soil type	Soil depth (h)	Saturated Soil Density (kg/m³)	Combined		Dimensionless Cohesion		Friction Angle		Hydraulic Conductivity ks		Transmitivity T = ks * h		Recharge R		T/R	
1					Lower Bound		Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound
			m	kg/m ³	Kpa	Kpa			deg	deg	m/sec	m/sec	m²/day	m²/day	mm/day	mm/day	m	m
	1	Residual	1	1800	10	20	0.566	1.133	20.8	36	1.00E-06	1.00E-05	0.086	0.864	23	100	0.86	37.57
	2	Residual	2	1800	10	20	0.283	0.566	20.8	36	1.00E-06	1.00E-05	0.173	1.728	23	100	1.73	75.13
	3	Residual	8	1800	10	20	0.071	0.142	20.8	36	1.00E-06	1.00E-05	0.691	6.912	23	100	6.91	300.52
	4	Coluvium	1	1750	2	12	0.116	0.699	20.8	36	1.00E-06	1.00E-05	0.086	0.864	23	100	0.86	37.57
	5	Coluvium	3	1750	2	12	0.039	0.233	20.8	36	1.00E-06	1.00E-05	0.259	2.592	23	100	2.59	112.70
	6	Coluvium	8	1750	2	12	0.015	0.087	20.8	36	1.00E-06	1.00E-05	0.691	6.912	23	100	6.91	300.52

SINMAP Model execution results

Stability Index map

Classification	Stability Index Values (SI)						
Stable	SI > 1.5						
Moderately Stable	$1.25 < SI \le 1.5$						
Quasi-stable	$1.0 < SI \le 1.25$						
Lower Threshold	$0.5 < SI \le 1.0$						
Upper Threshold	$0.0 < SI \le 0.5$						
Defended	SI = 0						

Slope-area charts

Landslides found in different stability classes

Region	Stable	Moderately Stable	Quasi Stable	Lower	Upper Threshold	Defended	Total number of Landslides in the region
1	0	0	0	0	0	0	0
2	0	0	1	2	0	0	3
3		0	0	0	4	1	5
4	0	0	0	1	0	0	1
5	0	0	1	4	3	3	11
6	0	0	0	0	0	0	0
Total landslides in the stability class	0	0	2	7	7	4	20
% landslides in the stability class	0%	0%	10%	35%	35%	20%	100%
General stability	0%	Stable	10% Marginal	90% Unstable			

Existing NBRO's landslide hazard map

Comparison

Scenario execution: 10, 20, 30, 40, 50, 60, 70, 80, 75, 100 and 345 mm rainfall 156,000 Safe are Landslide Susceptibility Class Very high hazard Low High hazard Safe Low to medium level hazard 22 Safe area

Number of pixels in hazard classes

				-	Rainf	all (m	ım pe	r day)	ay)										
Hazard Classes	10	20	30	40	50	60	70	~75	80	100	345								
Safe Area	503256	495161	493775	493642	493527	493485	493485	493485	493485	493485	493485								
Low to medium level hazard	88637	89926	89842	89444	89428	89406	89362	89310	89310	89310	89310								
Very high hazard	29843	36649	38119	38650	38782	38845	38889	38941	38941	38941	38941								

Conclusions and recommendations

- SINMAP is successfully utilized for delineating the landslide hazard zones in Rathnapura area
- 75mm daily rainfall was indentified as threshold value for fully saturation condition of the study area
- Comparison results show that, SINMAP model results give over estimation compared to the other hazard maps
- Both models predict the landslide initiation points only, landslide propagation need further investigation
- MapWindow GIS, SINMAP 2.0 for MapWindow are used for landslide hazard mapping at free of cost

Ongoing project

Disaster Risk Assessment of Uttarakhand

May 2016 - December 2017

Funded by the World Bank and delivered for the Project Implementation Unit (TA & CBDRM), Uttarakhand Disaster Recovery Project (UDRP), Government of Uttarakhand.

High Prone Landslide areas in the World

Source: https://www.nasa.gov/sites/default/files/thumbnails/image/landslide_locations.jpg

Landslide Susceptibility Mapping

Overall methodology

Views of landslide scars in Google Earth

Landslide inventory
is the most
important dataset
for landslide
hazard/
susceptibility
mapping

- The mapping is going on with the most recent images available in the Google Earth for whole Uttarakhand state
- Currently, around 7,200 landslides are identified
- Ongoing tasks
 - Mapping of landslide area
 - Mapping on past images on Google Earth too

Innovative Crowdsourcing Approach For Determining Building Clusters

Why

Crowdsourcing approach

Number of Grids: 75563 Grid size: 1.2km * 0.8 km ot Secure www.geoinfo.ait.ac.th/uk/ o Mendeley 🗎 Uttarakhand-DRA 🗎 Project Ads 🗎 Project Crowd Sourcing - Geoinformatics Centre, Asian Institute of Technology, Thailand Clear All Oops! Delete Last Submit

Notes: Level of this details would be enough

Notes: All the buildings near the river and mountainous area need to be digitized

Notes: Hope you can understand level of details we expect to be digitized

Monitoring and Quality Control

Continuously monitoring the quality of the work and communicating with crowdsourcing people

Overall Methodology

Association of Landslide Magnitude (Area)

- In order to assess the landslide risk to settlement/road, magnitude of landslide is an important factor
- Landslide Magnitude-Frequency distribution follows a Gamma Distribution

So, we will assess the proximity of the settlement/road to landslide susceptibility and determine the Landslide Magnitude-Frequency distribution

Association of Landslide Magnitude (Area)

Source:

https://www.researchgate.net/profile/Bruce Malamud/publication/241388019/viewer/AS:99596793548809@1400757135555/background/7.png

Assessment of Landslide Probability

Landslide probability of a cell = $\sum_{i=1}^{n} (Average Susceptibility of Proximity Class \times I)$

Preliminary results: part of susceptibility map

Landslide Magnitude-Frequency distribution

Developed based on the one GSI report

Preliminary results: Building clusters

Preliminary results: Landslide risk map

THANK YOU