
T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

 

 

Ontological Approach to Support Authoring 

for Game-Based Learning Environments 
 

 

Takanobu Umetsu
a
, Takuya Azuma

a
, Tsukasa Hirashima

b
, Akira Takeuchi

a
 

a
Computer Science and Systems Engineering, Kyushu Institute of Technology, Japan 

b
Department of Information Engineering, Hiroshima University, Japan 

umetsu@ai.kyutech.ac.jp 

 
Abstract: We previously implemented an authoring system to generate a learning 

environment based on a card game expressed in a flowchart. We improved the authoring 

system to automatically generate a learning environment by using words or sentences drawn 

from the rules of card games. The improvement is based on a card game model that is a 

structured representation of words and sentences from the rules of card games. In this paper, 

the card game model and the improved authoring system are introduced. The experimental 

evaluation of the improved system is also reported. 

 
Keywords: Game-based learning, Authoring, Ontology, Automatic generation 

 

 

Introduction 

 

We have developed an authoring system to generate a learning environment based on a card 

game from a flowchart that consists of operations and if-then statements [1]. However, it is 

difficult to describe the flowchart to create the environment exactly according to an author‟s 

intention. Therefore, we improved the authoring system. The improvement is based on a 

card game model that is a structured representation of words and sentences from the rules of 

card games. In this paper, the card game model and the improved system are introduced. 

In game-based learning, the activity to play is not only attractive as a game but is 

also useful for learning. Because it is a promising approach to achieve highly motivated 

learning, it is one of the most important topics in the research of computer-based learning 

environments. To date, many computer-based learning games have been implemented [2]. 

However, it is difficult to develop a learning game, because it is necessary to satisfy 

both the gaming and learning aspects in an activity. Malone suggested that a learning game 

should be designed such that the skills required to play the game are also as valuable as 

learning the goals [3]. Klawe analysed the role of navigation and interaction [4]. Maragos 

emphasized the role of multiple stages [5]. Halff dealt with adventure games, in which the 

player assumes the role of a character in a fantasy world. He proposed that a learning game 

should restrict the behaviour of a player to make the player learn in a suitable way [6]. 

There have been several investigations on the design methods of learning games; 

however, most of these investigations deal with only a restricted part of the design process. 

Therefore, developers are required to have sufficient knowledge and abilities in both 

learning and games development. 

We thus investigated concrete methods to embed problem-solving exercises into an 

existing card game. We call this the EPIC (Embedding Problem-solving exercises Into a 

Card game) method [7]. In this method, an existing card game is transformed into a learning 

game by exchanging cards of the game for cards with problem statements. The answer to the 

problems is used instead of the property of the original cards. In this way, a player uses the 



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

exchanged cards to solve the problems. We also implemented an authoring system to 

automatically generate computer-based learning games from a flowchart based on EPIC 

method. The results of the experimental evaluation confirmed that the application generated 

many useful learning games [1]. 

However, it is difficult to create the flowchart to generate the environment just as an 

author intended. In the experimental tests of this authoring system, which will be introduced 

in this paper, there were many authors who were unable to use the system or took long time 

to create a simple learning game. 

We think this difficulty is caused by the gap between the flowchart and playing the 

game-based learning environment. Therefore, we developed a model that bridges the gap. 

The model is a structured representation of the components of the flowchart and the rules of 

the activity, and they are related by subsumption (is-a) and meronymy (part-of) relations. In 

other words, the model explains a way to transform the rules into the flowchart. 

Based on the model, we improved the authoring system. The new authoring system 

generates a learning environment from words or sentences that are used to describe a card 

game rule. The new authoring game can transform the words and sentences into a flowchart 

with the model and generate a game-based learning application from the flowchart. 

 This paper introduces the models and the improved authoring system. The 

experimental evaluation of the system is also reported. 

 

 

1. Related Work 

 

1.1 EPIC Method 

 

The embedding problem-solving exercises into a card game (EPIC) method is a design 

method for game-based learning that embeds problem-solving exercises into a card game 

[7]. Figure 1 shows the framework of the EPIC method. 

A card game is played using cards, for example, “Poker”, “Blackjack” and “UNO”. 

In such games, each card has certain properties, such as “number”, “mark (suit)” and 

“color”. The values of these properties are utilized while playing the card game. For 

example, Spit (also known as Speed or Slam) is a card game in which a player can place a 

card on another card if the numbers of the two cards are sequential. 

 For playing the game, operations of the cards are decided based on only three 

evaluations of the card‟s value: assignment, comparison and calculation. Therefore, an 

existing card game is transformed into a playable new game by exchanging cards of the 

game for other cards having properties on which the three evaluations can be performed. 

In other words, a new game can be developed by exchanging cards of an existing 

card game for cards with problem statements. The problem statement consists of given 

information and questions. A question is used instead of the property of the original card. 

The answer to the question is used instead of the value of the property. Thus, for playing the 

game created by the exchange, a player must derive answers from the given information, 

because the answers are used instead of the values of properties. Because the derivation 

activity is a problem-solving exercise, this game is game-based learning. 

As an example, the Spit game, mentioned above, is transformed into a learning game 

for arithmetic calculations. A Spit game card has only “number” as a property. For example, 

the value of the “six of hearts” is 6, the value of the “seven of hearts” is 7, and the value the 

“eight of diamonds” is 8. A player knows the card‟s number. In the Spit game, a player 

places a card on another card if the two cards are sequential in number. For example, a 

player can place the “six of hearts” or the “eight of diamonds” on the “seven of hearts”. The 

left side of Figure 2 shows this example, in which numbers are compared in the Spit game. 



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

derive answ er

w ithout change

assignm ent com parison calculation

rules

assignm ent com parison calculation

rules

exchange 

playing cards 

for new  cards 

w ith problem s

C ard gam e Learning gam e

card

value

properties

card

value

properties

use values of properties

answ er

questions

problem  card

given 

inform ation

answ er

questions

problem  card

given 

inform ation

use answ ers

 
Figure 1. Framework of EPIC method 

 

4 × 2

8 － 2
3 ＋ 4

Learning gam e:

Put sequential card by answ er

8

6
7

Card gam e:

Put sequential card by num ber

Learning gam e: Place sequential card by answ er

7

Card gam e: Place sequential card by num ber

8

6

4 × 2

8 － 2
3 ＋ 4

 
Figure 2. Example of learning game created by the EPIC method 

 

Using the EPIC method, the Spit game is transformed into a learning game using 

new cards with problem statements instead of playing cards. For example, “Tom had 7 

candies. Bill had 3 candies. Then, Bill received 3 candies from Tom” and “How many 

candies does Tom have?” are written on a new card (card A). “Tom had 3 candies. Bill had 

1 candy. Then, Bill received 2 candies from Tom,” and “How many candies does Bill 

have?” are written on another card (card B). The former sentences are given information, 

while the latter sentences are questions. In this learning game, a player has to solve the 

problem shown on the card, because the answer to the question is used instead of the value 

of a number. For example, a player can place the card A on the card B, because the answers 

are sequential numbers, that is, “4” and “3”, respectively. A player must solve the problems 

to judge whether or not the cards can be placed. Figure 2 shows another simple example of a 

learning game created using the EPIC method from the Spit game and arithmetic formulas. 

In the example, questions of the problems are omitted because the questions are obvious. 

 

 

1.2 Generation of Game-based Learning from Flowchart 

 

Based on the EPIC method, we have implemented an authoring system to automatically 

generate a game-based learning application from a flowchart of an existing game and 

problems. The flowchart is created by an author from primitive parts. Figure 3 shows an 

example of a part of the flowchart. 

There are ten parts: start game; end game; move card; flip card; choose card; shuffle 

array of cards; assignment value or answer of calculation into variable; choose value; 

if-then-else statements; and print value. The parts are related by an arrow coming from one 

part and ending at another part, which represents that control passes to the symbol in 

direction of the arrow. 

Flowcharts of various games can be described with the these ten parts. The results of 

the experimental evaluation confirmed that the authoring system generated 120 learning 

games from 29 card games and nine sets of problem-solving exercises. Most of the 

generated learning games were playable. 

However, it is difficult to create the flowchart to generate the environment exactly 

according to the author‟s intention. In the experimental tests of this authoring system, which  



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

M ove all_card_list[N ] to  

player ’s_hand [PLAYER][]

If N  == M A X_CA RD _N U M  

then goto A 3 e lse  goto B3 

N  =  N  +  1

If PLAYER == 

M A X_PLAYER_N U M  then 

goto B5 e lse  goto C5

PLAYER =  PLAYER +  1PLAYER =  0

EN D

STA RT

A 3
B3

B5 C5

 
Figure 3. Example of a Part of Flowchart (Translated) 

 

will be introduced in Section 4, there were many authors who were unable to create the 

flowchart or took a long time to create a simple environment. 

The authors may not know which function of the environment the part can perform 

and how to combine these parts to implement a function of the environment. For example, to 

implement “the player will take additional two cards in next turn”, several parts are needed. 

One of the parts needed is “assignment value or answer of calculation into variable” as 

“number of additional cards = number of additional cards + 2”. It is difficult to associate 

“assignment value or answer of calculation into variable” with “the player will take an 

additional two cards in the next turn.” As another example, to implement “deal all cards to 

the players”, “move card” and “if-then-else statements” are combined to implement “move 

card” many times. Figure 3 shows the detail of this flowchart. However, one author in the 

experimental tests never thought of the combination. 

We think this difficulty is caused by the gap between the ten parts and playing the 

game-based learning environment. Although the primitive parts can become various 

flowcharts, the parts are so primitive that there is a huge gap between the parts and 

flowcharts. Moreover, there is no explanation of which function of the environment the part 

can perform and how to combine these parts to implement a function of the environment. 

Under the circumstances, we developed a model that bridges the gap. We call it the 

“card game model.” We will introduce the card game model in the next section. 

 

 

2. Card Game Model 

 

Based on an examination of 184 card games, we developed the card game model. We listed 

typical nouns, verbs and sentences from the rules of 184 card games. The card game model 

is a structured representation of the nouns, verbs, sentences, and the parts of a flowchart 

with subsumption (is-a) and meronymy (part-of) relations. 

The subsumption relation shows examples of functions of the environment the part 

can perform. The meronymy relation explains how to combine these parts to implement a 

function of the environment. In other words, the card game model explains a way to 

transform the rules into the flowchart. 

The card game model is shown in Figure 4. Because the model is so large the detail of the 

model shown is considerably limited. The model was developed from Japanese rules of the 

games, so it was meant for Japanese user. The model shown in Figure 4 a direct translation 

from Japanese, and hence may seem artificial. 



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

Card game

Rule

Game state

Order

Procedure

operator

Value operator

assignment

Additional <constant value> card

Get  <constant value> score

<player> win

<counter 1> = <counter 1> + <constant value>

Sort order 

of value

<winner> = <player>

<current player> = <player list[1]>

<working area 1> = <player list[0]>

First out <player list>

Change current player

Last in <working area 1>

…..
…..

Card operator

…..
…..

Card set

Player

Global state

Counter

Property of cards
Parameter

Score

Number of cards

Card field

…..

Card array

Card

Property

Parameter Counter

Number of turns

Player variable

Winner

Current player
Card field

Card stack

…..

hand

…..

Card array

Discard pile

Move card

If-then conditional blanching

Flip <card>

Shuffle <card stack>

Order

Proposition

Compare number of cards

Compare parameter

Compare property

Deal all cards to the players

move <card stack[top]> to <player’s hand[]>

if <card stack[top]> == null then goto <next 

operation> else goto <the move operation>

discard <card> to <card stack>

…..

If number of cards in <card field> == 0 then …

If <count> <comparison> <count> then …

If <property> <comparison> <count> then …

is-a

is-a

is-a

is-a

is-a

is-a

is-a
is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

part-ofpart-of

part-of

part-of

part-of

is-a

part-of

part-of

part-of

part-of

is-a

part-of

part-of

part-of

 
Figure 4. Card Game Model (Translated) 

 

 

3. Improvement of the Authoring System 

 

We improved the authoring system based on the card game model. As mentioned in Section 

2, it is difficult to create the flowchart to generate the learning game exactly according to the 



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

author‟s intention, because of the gap between the parts and rules of learning games. 

Therefore, we improved the authoring system to generate a learning environment by using 

words or sentences within the rules of card games. If to implement a learning game based on 

Memory game with the old authoring system, the author has to create the flowchart in the 

left side of Figure 5. On the other hand, if to implement the same learning game with the 

improved system, the author simply has to enter the sentences in the right side of Figure 5 by 

clicking the sentences from the card game model. The improvement is based on a card game 

model that is a structured representation of words and sentences drawn from the rules of 

card games. 

Three new functions of the authoring system were implemented: (1) show instances 

of parts by the subsumption relation; (2) assemble automatically by the meronymy relation; 

and (3) operate on structured data. We will explain these functions, but the examples of 

these functions seemed artificial because the card game model was developed from 

Japanese rules of the games as mentioned in Section 2. 

First, we will explain (1) show instances of parts by the subsumption relation. The 

subsumption relation shows examples of functions of the learning game that the parts can 

perform. The examples help the author choose the appropriate part to implement or 

automatically generate the function exactly according to the author‟s intention. For 

example, to implement “the player will take an additional two cards in the next turn”, the 

author searches for similar words from the card game model in the screen of the authoring 

system. The author can find that “additional <constant value> cards” is a subclass of 

“<count 1> = <count 1> + <constant value>” and “<count 1> = <count 1> + <constant 

value>” is a subclass of “assignment <value> into <variable>”. Also the author can find that 

“number of cards” is subclass of “count”. Then, the author clicks the “additional <constant 

value> cards”, chooses „number of cards” from the dropdown-box of <count> and enters the 

name of the variables of “number of cards” and the constant value of the sentence. If the 

author enters “next_card_num” as the name of the variables and “two” as the constant value, 

the authoring system automatically generates “next_card_num = next_card_num + 2” based 

on the card game model. 

 Second, we will explain (2) automatic assembly by the meronymy relation. This 

helps the author when the author does not know how to combine the parts to implement a 

function of the learning game. The authoring system can automatically generate a function 

from words that are used for a description of rules based on the meronymy relation in the 

card game model. For example, to implement “deal all cards to the players” with the old 

authoring system, the author had to create the flowchart as shown in Figure 3. With 

improved authoring system, the author only clicks “deal all cards to the players,” which is 

the gray box in Figure 4, from the card game model in the screen of the authoring system. In  

 

Shuffle all_card_list[]

M ove all_card_list[N ] to  field[]

N  = 0

N  = N  + 1

If N  == M A X_CA RD _N U M  then goto

A  else goto B 

Current_player = 0

P layer[Current_player] Choose a 

card from  field[]

P layer_score[Current_player] = 0

If N  == M A X_PLA YER_N U M  

then goto A  else goto B 

Current_player = Curren_player + 1Current_player = 0

Flip  CH O SEN _CA RD

FIRST_CA RD  = CH O SEN _CA RD

Player[Current_player] Choose a 

card from  field[]

F lip  CH O SEN _CA RD

If F IRST_CA RD .property1 == 

CO SEN _CA RD .property1 then goto B 

else goto A  

A B

A B

STA RT

Player_score[Current_player] =  

P layer_score[Current_player] + 2

If N  == M A X_PLA YER_N U M  

then goto A  else goto B 

Current_player = Curren_player + 1Current_player = 0

A B

REST_CA RD _N U M  = 

REST_CA RD _N U M  - 2

REST_CA RD _N U M  = 

M A X_CA RD _N U M

A B

M ove FIRST_CA RD  to 

p layer_hand []

M ove CH O SEN _CARD  to 

p layer_hand []

If REST_CA RD _N U M  == 0  

then goto B else goto A  

A

B

W inner_list[] =  P layer[]

N = 0

If P layer_score[W inner_list[M ]] < 

P layer_score[W inner_list[M +1]] then 

goto A else goto B 

M  = 0

W orking_area = W inner_list[M ]

W inner_list[M ] = W inner_list[M +1}

W inner_list[M +1] = W orking_area

M  = M  + 1

If M +1 == M A X_PLA YER_N U M  

then goto B else goto A  

A

B

A
B

N  = N  + 1

If N  == M A X_PLA YER_N U M  

then goto A  else goto B

Print  W inner_list[]

A B

EN D

old  authoring system

1.  Shuffle  a ll cards.

2.  M ove all cards to  fie ld .

3 .  Current p layer flips tw o cards of fie ld  cards face -up.

4.  If face-up cards are  of the sam e answ er,

5. (4=true) then m ove the cards to  current p layer ’s hand.

6. (4=true)  If num ber of fie ld  cards is 0 ,

7 . (6=true)  then w inner is the p layer w ith  the m ost cards.

8. (6=true)  The gam e is end.

9. (6=false) e lse  go  to  ru le  3 .

10. F lip  a ll fie ld  cards face -dow n.

11. P lay passes to  the next p layer.

12. G o to  ru le  3 .

im proved authoring system
 

Figure 5. Difference between the Old and Improved System 



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

the card game model, the “deal all cards to the players” consists of “move <card stack[top]> 

to <player‟s hand[]>,” “if <card stack[top]> == null then goto <next operation> else goto 

<the move operation>” among others. The authoring system automatically generates the 

flowchart of the function based on the meronymy relation. 

 Third, we will explain (3) operation on structured data. In the card game model, data 

of the game state, which are card array, card stack, player, player hand, player score, among 

others, are structured. Therefore, we implemented not only operations on one data but also 

operations on structured data. For example, to implement “a player who has the 

biggest-value card gets a score of 3 points” with the old authoring system, the author had to 

create a flowchart that compared two cards many times with working area that contained a 

bigger-value to know the biggest-value card. On the other hand, with the improved 

authoring system, the author only clicks “a player who has <characteristics of a card> gets 

score <constant value> points” and enter the bigger-value card as the <characteristics of a 

card> and 3 as the <constant value>. Furthermore, because players, cards and score are not 

related in the old authoring system, the author had to create a flowchart including the 

relations in a complicated way. On the other hand, with the improved authoring system, it is 

easy to create the functions in the above way, because they are structured. 

 

 

4. Evaluations 

 

We conducted two experimental evaluations. One was an experiment for confirming that 

the improved authoring system could generate various learning games. The other was to 

confirm that it was easier to create a learning game using the improved method than the old 

one. 

In the first evaluation, two university students of computer science and systems 

engineering created 52 learning games from 10 card games and 7 problem-solving exercises 

using the improved authoring system. They played 52 games and confirmed that they were 

playable. As additional information, experimental tests on 14 of 52 games were already 

conducted [1][7]. We confirmed that 14 games were useful for learning and they were as 

enjoyable as the original games. 

In the second evaluation, eight subjects created a learning game using both 

improved and old authoring systems. The subjects were engineering graduates of a 

university. The learning game they created was based on the game Memory and arithmetic 

formulas. The learning game was one of the confirmed 14 games. All subjects were familiar 

with the Memory game and arithmetic formulas. Also, the subjects played the learning 

game based on the Memory game and arithmetic formulas that had been developed by us 

before the experiment. 

Four of the eight subjects first created the learning game with the old authoring 

system, and then created the same game with the improved authoring system. The other four 

of the eight subjects first created the learning game with the improved authoring system, and 

then created the same game with the old authoring system. We explained how to use the 

authoring systems for 20 minutes before the experiment. 

In the experiment, the authoring systems recorded the total time for the game 

creation. If there was a bug when the subjects tested playing the learning game, the subjects 

had to debug the learning game. The creation time included the debugging time. The 

number of debugs was also recorded. If the subjects could not create the learning game 

irrespective how hard they tried, they could give up after 90 minutes. 

Table 1 shows the results of the experiment. All eight authors indicated by letters A 

to H began with the improved authoring system were able to create the learning game. There 

were four authors who gave up while using the old system. Creating the learning game with  



T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in 

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education 

 

Table 1. Results of the Experiment 

Author Old system New system 

Creation time 

[min] 

Number 

of debugs 

Creation time 

[min] 

Number 

of debugs 

Old system 

-> New system 

A Give up (90) 0 141 8 

B Give up (117) 0 173 4 

C 566 11 152 5 

D 312 5 126 2 

New system 

-> Old system 

E 510 35 210 22 

F Give up (161) 3 203 4 

G Give up (110) 0 133 4 

H 491 10 191 3 
 

the old authoring system always took a longer time and had more bugs than the new one. 

The results suggested that that it was easier to create a learning game than the old one 

 

 

5. Conclusions 

 

We have implemented an authoring system to generate a learning environment based on a 

card game from a flowchart. We improved the authoring system to generate a learning 

environment from words or sentences drawn the rules of the card games. The improvement 

is based on a card game model that is a structured representation of words and sentences 

within the rules of card games. Through experimental evaluation, we confirmed that it was 

easier to create a learning game using the improved system than using the old system. 

In future work, we hope to examine the differences between the effectiveness of the 

learning game created by the improved authoring system compared to the old one. We also 

plan to confirm that the improved authoring system can generate more varied learning 

games. The most important future work is the improvement of the card game model. 

 

 

Acknowledgements 

 

This work was supported by KAKENIHI (22700816). 

 

 

References 

 
[1] U. Takanobu, H. Tsukasa, T. Akira (2006). Property Exchange Method for Automatic Generation of 

Computer-Based Learning Games. Proceedings of ICCE2006 (pp. 283-490). 

[2] Marc Prensky (2001). Digital game-based learning. McGraw-Hill. 

[3] T. W. Malone (1981). Toward a Theory of Intrinsically motivating instruction. Cognitive Science, Vol. 5 

(pp. 130-145). 

[4] M.M. Klawe (1998). When Does The Use Of Computer Games And Other Interactive Multimedia 

Software Help Students Learn Mathematics? http://www.cs.ubc.ca/nest/egems/reports/NCTM.doc 

[5] H. M. Halff (2005). Adventure Games for Science Education: Generative Methods in Exploratory 

Environments. Proc. of AIED05 WORKSHOP5: Educational Games as Intelligent Learning 

Environments (pp.12-20). 

[6] K. Maragos, M. Grigoriadou (2005). Towards the design of Intelligent Educational Gaming Systems. 

Proc. of AIED05 WORKSHOP5: Educational Games as Intelligent Learning Environments (pp.35-38).  

[7] U. Takanobu, K. Yoshinori, H. Tsukasa, T. Akira (2007). Automatic Generation of Computer-Based 

Learning Games for Problem Solving. Supplementary Proceedings: Poster of ICCE2007 (pp. 65-66) 

 


