Instruction Packing for a 32-bit Resource Efficiency Processor

Prabhas Chongstitvatana Phanupan Nanthanavoot and Alongkot Burutachanai

Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University

Topics

- SMC Processor Design
- VY Processor Design
- Experiment: SMC vs VY
- Result
 - Performance
 - Program's size

SMC Processor

- Stack-based architecture
- 16-bit processor
- von Neumann architecture
- No pipeline, no interrupt

SMC Instruction Set

- Stack-based instruction set called "Bytecode"
- 25 instructions separate into 3 sets
 - Arithmetic and Logic
 - Data Transfer
 - Control flow

SMC Bytecode Format

■ Three formats

VY Processor

- Design based on SMC
- 32-bit stack-based processor
- Modified from SMC
 - Data path
 - Change bytecode format to support 32-bit processing
 - Adding some necessary bytecode into instruction set
 - Instruction packing

VY Bytecode

■ There are three formats like the SMC

■ 40 Instructions

Modification from SMC

- Modified the data path
 - Put the PC out of Register file
 - 2-phase clock
- Adding more bytecode for decrease the program's size and increase the performance
- Instruction packing

Instruction Packing

- Variable length
- Save the memory
- Slow fetching

- 32-bit fix length
- One clock fetch
- Large memory size

Instruction Packing Format

Decoding and Execution

Experiment

- Simulate the SMC and VY processor
- Stanford's integer benchmark
 - Compiled into each processor
- Compare between VY and SMC (2-phase):
 - Performance
 - Program's size

Result: Performance

- Ratio of cycle time between VY and SMC is 2.12
- CPI of VY is 4.99, SMC is 8.61

Result: Time for Fetching

Benchmark	SMC %Fetch	VY %Fetch	
bubble	55 32		
hanoi	54	31	
matmul	56	32	
perm	56 33		
queen	55 34		
quick	56 33		
sieve	55 32		
Average	55	32	

Result: Instruction Count

■ VY is 81% of SMC

Result: Memory Read

■ VY is 25% of SMC

Result: Program Size

Result: NOP Byte Space

Benchmarks	VY (byte)	NOP (Byte)	%NOP
bubble	272	34	12.5%
hanoi	180	15	8.33%
matmul	560	61	10.89%
perm	252	32	12.70%
queen	548	75	13.69%
quick	348	40	11.49%
sieve	272	36	13.24%
NOP Byte Average			11.83%

Conclusion

- Design of 32-bit stack processor
- Instruction packing, modification of data path and bytecode adding plays an important role in
 - Increasing the performance 2.12 times of SMC
 - Keeping the small program's size

Future Work

- Develop this design to run in FPGA
- Apply the stack caching model into this design

Question?