Characterization of LPCVD TEOS Thin Film using Ellipsometer

by

Sompong Charoenkit
Thongchai Thongvigitmanee
Ladthai Thaiyotin
Ekalak Chaowicharat
Charndet Hruanun
Amporn Poyai
Itti Rittaporn

Thai Microelectronics Center (TMEC)
National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)
Basic Fabrication process consist of three major steps:

1. Deposition of thin films
2. Photolithography
3. Selective etching of the films.
THIN FILM DEPOSITION FOR BASIC ETCH PROCESS

[Diagram showing film deposition, PR ashing & clean, and subtractive processes]

THIN FILM DEPOSITION FOR FABRICATION PROCESS

[Diagram showing layers of materials like PE-Nitride, PE-Oxide, Al, TEOs, Nitride, TEOs, Poly]
Outline

- Thin film technology
- LPCVD system
- TEOS thin film deposition
- Characteristics of TEOS thin films
- Conclusion
Outline

• Thin film technology
• LPCVD system
• TEOS thin film deposition
• Characteristics of TEOS thin films
• Conclusion
Thin film technology

Deposition technologies can be divided into two groups:

1. Physical Vapor Deposition (PVD) process
2. Chemical Vapor Deposition (CVD) process
Type of Deposition Methods

Physical Vapor Deposition: PVD
- Evaporation
- E Beam evaporation
- Sputtering

Chemical Vapor Deposition: CVD
- Plasma Enhanced CVD (PECVD)
- Atmospheric Pressure CVD (APCVD)
- Low Pressure CVD (LPCVD)
Outline

- Thin film technology
- LPCVD system
- TEOS thin film deposition
- Characteristics of TEOS thin films
- Conclusion
Low Pressure CVD (LPCVD)

Advantage
- Moderate deposition rates
- Very high throughput
- Minimal contamination

Disadvantage
- Film contamination (reaction products and carrier gases)
LPCVD horizontal hot-wall furnace system
SVG LPCVD furnace THERMCO TMX2603 at Thai Microelectronics Center (TMEC)
Structure of LPCVD TEOS furnace

Computer Control TEOS liquid source

Quartz Boat Gas cabinet & Vacuum System
Outline

- Thin film technology
- LPCVD system
- TEOS thin film deposition
- Characteristics of TEOS thin films
- Conclusion
Step in film growth

- Gases are introduced into a reaction chamber
- Gas species move to the substrate
- Reactants are adsorbed on the substrate
- Film-forming chemical reactions
- Desorption and removal of gaseous by-products
Oxide (SiO$_2$) Films Deposition

- Silane & Oxygen (300-500 C)
 \[\text{SiH}_4 + \text{O}_2 \rightarrow \text{SiO}_2 + 2\text{H}_2 \]
 \[450 \text{ C} \]

- Tetraethylorthosilicate: TEOS (500-800 C)
 \[\text{Si(OC}_2\text{H}_5)_4 \rightarrow \text{SiO}_2 + \text{by-products} \]
 \[700 \text{ C} \]

- Dichlorosilane & Nitrous (\sim 900 C)
 \[\text{SiCl}_2\text{H}_2 + 2\text{N}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{N}_2 + 2\text{HCl} \]
 \[900 \text{ C} \]
TEOS Films by LPCVD

Advantage
- Isolation layer
- Step coverage
- Hard mask
- Moderate deposition rate

Disadvantage
- Bad thickness uniformity (~3%)
Uniformity (%) = \left[\frac{\text{Standard deviation}}{\text{Thickness average}} \right] \times 100
Process A: Different Operate Pressure

<table>
<thead>
<tr>
<th>Technique</th>
<th>LPCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>705 °C</td>
</tr>
<tr>
<td>Gas flow TEOS</td>
<td>80 SCCM</td>
</tr>
<tr>
<td>Operate Pressure</td>
<td>150, 200, 250, 300 mtorr</td>
</tr>
<tr>
<td>Deposit Time</td>
<td>20 minute</td>
</tr>
<tr>
<td>Wafer spacing</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Process B: Different Temperature

<table>
<thead>
<tr>
<th>Technique</th>
<th>LPCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>680, 690, 700, 705, 710 °C</td>
</tr>
<tr>
<td>Gas flow TEOS</td>
<td>80 SCCM</td>
</tr>
<tr>
<td>Operate Pressure</td>
<td>200 mtorr</td>
</tr>
<tr>
<td>Deposit Time</td>
<td>20 minute</td>
</tr>
<tr>
<td>Wafer spacing</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Process A.

Dep rate VS. Operate pressure
- Deposition rate (nm/min) vs. Pressure (mTorr)
- Graph shows a positive correlation between deposition rate and pressure.

Uniformity VS. Operate pressure
- Uniformity (%) vs. Pressure (mTorr)
- Graph indicates a slight increase in uniformity with pressure.

Process B.

Dep rate VS. Temperature
- Deposition rate (nm/min) vs. Temperature (degree C)
- Graph shows a positive correlation between deposition rate and temperature.

Uniformity VS. Temperature
- Uniformity (%) vs. Temperature (degree C)
- Graph indicates a slight increase in uniformity with temperature.
Process C: Wafer spacing

<table>
<thead>
<tr>
<th>Technique</th>
<th>LPCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>705 °C</td>
</tr>
<tr>
<td>Gas flow TEOS</td>
<td>80 SCCM</td>
</tr>
<tr>
<td>Operate Pressure</td>
<td>175, 200, 225 mtorr</td>
</tr>
<tr>
<td>Deposit Time</td>
<td>20 minute</td>
</tr>
<tr>
<td>Wafer spacing</td>
<td>Adjustment</td>
</tr>
</tbody>
</table>

Process D: Different Deposition Time

<table>
<thead>
<tr>
<th>Technique</th>
<th>LPCVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>705 °C</td>
</tr>
<tr>
<td>Gas flow TEOS</td>
<td>80 SCCM</td>
</tr>
<tr>
<td>Operate Pressure</td>
<td>200 mtorr</td>
</tr>
<tr>
<td>Deposit Time</td>
<td>30, 60, 90 minute</td>
</tr>
<tr>
<td>Wafer spacing</td>
<td>Adjustment</td>
</tr>
</tbody>
</table>
Outline

- Thin film technology
- LPCVD system
- TEOS thin film deposition
- Characteristics of TEOS thin films
- Conclusion
ELLIPSOMETER

Thin Film Measurement at Thai Microelectronics Center (TMEC)
Properties of Silicon Dioxide Films

<table>
<thead>
<tr>
<th>Property</th>
<th>Thermally at 1000 C</th>
<th>SiH4+O2 at 450 C</th>
<th>TEOS at 700 C</th>
<th>SiCl2H2+N2O at 900 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>SiO₂</td>
<td>SiO₂(H)</td>
<td>SiO₂</td>
<td>SiO₂(Cl)</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.46</td>
<td>1.44</td>
<td>1.46</td>
<td>1.46</td>
</tr>
<tr>
<td>Strength (10⁶V/cm)</td>
<td>>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Etch rate (nm/min) (100:1 H2O:HF)</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Etch rate (nm/min) (buffered HF)</td>
<td>44</td>
<td>120</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Step coverage</td>
<td>-</td>
<td>non conformal</td>
<td>conformal</td>
<td>conformal</td>
</tr>
</tbody>
</table>

Fundamentals of Semiconductor Fabrication (page 158)
Properties of TEOS Films by LPCVD

<table>
<thead>
<tr>
<th>Property</th>
<th>TEOS at 705 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>SiO₂</td>
</tr>
<tr>
<td>Refractive index (n)</td>
<td>~1.45</td>
</tr>
<tr>
<td>Absorption coefficient (k)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Wafer uniformity (%)</td>
<td>~1.0</td>
</tr>
<tr>
<td>6 inch wafer</td>
<td></td>
</tr>
<tr>
<td>Deposition rate (nm/min)</td>
<td>9.2</td>
</tr>
<tr>
<td>Etch rate (nm/min)</td>
<td>66</td>
</tr>
<tr>
<td>HF3%</td>
<td></td>
</tr>
<tr>
<td>Step coverage</td>
<td>Conformal</td>
</tr>
</tbody>
</table>
TEOS Thin Film by LPCVD for Application
Outline

- Thin film technology
- LPCVD system
- TEOS thin film deposition
- Characteristics of TEOS thin films
- Conclusion
Conclusion

The silicon dioxide (TEOS) films have wafer uniformity about 1.0 \% refractive index about 1.45 absorption coefficient of 0.0 deposition rate of 9.2 nm/min Etch rate (HF3\%) of 66 nm/min
Acknowledgements

I would like to give my special thanks to TMEC Team
Thai Microelectronics Center (TMEC)
National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)
Thank you for your attention