Wavelength-Sensitive Thin-Film Filter-based Variable Fiber-Optic Attenuator with an Embedded Monitoring Port

Sarun Sumriddetchkajorn

Khunat Chaitavon

Electro-Optics Section, Electronics Division
National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)
Ministry of Science and Technology, Thailand

This work was previously published in IEEE Photonics Technology Letters, Vol. 16, No. 6, pp. 1507-1509, June 2004, and was presented at the Conference on Lasers and Electro-Optics Pacific Rim, Dec. 2003
WDM Variable Optical Attenuator Architectures

• Structure I

- Three-Port VOA Array
- N Three-Port VOAs
- Two MUXs/DeMUXs
- FBC: Feedback Controller

Can be reduced?
• Structure II

- N Two-Port VOAs
- One MUX/DeMUX
- One Optical Circulator *Can be eliminated?*
Our Proposed WDM VOA Architecture

- No Optical Circulator
- No MUX/DeMUX
Motivation of Using Commercially Available Thin Film Filter

- Low Cost Device
- Low Optical Loss
- Low Polarization Dependent Loss
- Low Polarization Mode Dispersion
- Moderate Optical Isolation
- High Durability
Our Proposed Wavelength Sensitive Thin Film Filter-based Three Port Fiber-Optic Variable Attenuator

- Mirror & TF are Simultaneously Moved in the Analog Fashion
- Each Component is Controlled by One Actuator
- Ease of Free-Space Alignment
- Speed \(\sim \) Speed of Typical Mechanical VOA

Theoretical Analysis

Optical Power at OUT:

\[P_o = 1 - \text{erf}(\sqrt{2}x / w) \]

Optical Power at PD:

\[P_m = \text{erf}(\sqrt{2}x / w) \]

x: Position of TF \quad w: Optical Beam Radius at the Mirror/TF Plane
Our Experimental Demonstration

- Tunable Laser: Santec, Inc., TSL-210, 1530-1610 nm
- TF: Thin Film Filter Centered at 1546.12 nm
Measured Optical Loss

• At OUT Port:

 Measured Optical Loss = 0.47 dB

• At Monitoring Port:

 Measured Optical Loss = 1.04 dB
Measured Dynamic Range

- Measured Optical Power

Agrees Well with the Theoretical Analysis

Port 1: Monitoring Port
Port 2: OUT Port
• Measured Optical Attenuation in dB

Maximum Dynamic Range

15.9 dB at OUT Port 47 dB at Monitoring Port
Measured Optical Isolation

Unwanted Wavelength Channel at the Desired Output Port

• At OUT Port
 Measured Optical Isolation > 15.9 dB

• At Monitoring Port
 Measured Optical Isolation > 25 dB: TF in the Path
 > 47 dB: Mirror in the Path
Measured Polarization Dependent Loss

- Scrambles the input state of polarization via a mechanical polarization controller
- Observes the maximum and minimum optical power at the desired port

\[
PDL = 10 \log \left(\frac{P_{\text{max}}}{P_{\text{min}}} \right) \text{ dB}
\]

- PDL < 0.04 dB: at Monitoring Port
- PDL < 0.6 dB: at OUT Port
Key Limiting Factors

• FC/APC Connectors

• Quality of Thin Film Filter

• Quality of Mirror

• Free-Space Optical Alignment
Conclusion

• Proposes Wavelength Sensitive Thin Film Filter-based Variable Fiber-Optic Attenuator with an Embedded Monitoring Port

Our Simple WDM VOA Structure
- No MUX/DeMUX
- No Optical Circulator

• Experimental Demonstration using a Commercially Available Thin Film Filter at 1546.12 nm
 - Measured Average Optical Loss 0.75 dB
 - Measured Dynamic Range > 16 dB
 - Measured Optical Isolation > 16 dB
 - Measured PDL < 0.6 dB

• Future Work Relates to Commercialize Our Proposed Wavelength Sensitive Thin Film Filter-based Fiber-Optic Variable Attenuator