ปัญหาแบบมีโครงสร้าง (structure problem)

ปัญหาในโลกนี้เป็นปัญหาที่เกิดจากการผสมผสานของตัวแปรจำนวนมาก มีทั้งตัวแปรที่มีรูปธรรมและไม่มีรูปธรรม ตัวแปรที่มีรูปธรรมได้แก่ วัตถุ เงิน สถานที่ เป็นต้น สำหรับตัวแบบที่ไม่เป็นรูปธรรม เช่น ความรู้สึก อารมย์ และสิ่งที่เป็นความคิด ความเข้าใจ ประสบการณ์ ซึ่งยากที่จะเขียนออกเป็นสูตรหรือสมการ สิ่งที่สำคัญคือ ปัญหาส่วนใหญ่เป็นปัญหาที่มีความซับซ้อน การแบ่งแยกปัญหาออกเป็นปัญหาที่มีโครงสร้าง และไม่มีโครงสร้าง จึงขึ้นอยู่กับตำแหน่งที่เกี่ยวโยงกับปัญหา นั่นเอง

ปัญหาที่มีโครงสร้าง เป็นปัญหาที่สามารถผูกตัวปัญหาเป็นโมเดลได้ชัดเจน สามารถแทนสูตร สมการ หรือสร้างระบบการแทนปัญหา หาวิธีการแก้ปัญหาเพื่อให้ได้คำตอบ ปัญหาที่มีโครงสร้างเป็นปัญหาที่มีการศึกษา และสร้างรูปแบบทางคณิตศาสตร์ได้ การศึกษาทางคณิตศาสตร์สร้างหลักการพื้นฐานต่าง ๆ มากมายที่จะนำมาใช้ในการแก้ปัญหา ซึ่งศาสตร์ของการแก้ปัญหาและวิธีการก็มีผู้พัฒนาคิดค้นขึ้นมากมาย และยังคงพัฒนาต่อไป เช่น การหาผลลัพธ์ที่ดีที่สุด การหาคำตอบที่เป็นไปได้ และการสร้างทางเลือกที่ดี วิธีการแก้ปัญหาจึงเป็นการใช้วิธีการเชิงคำนวณอยู่มาก
อย่างไรก็ดี การมีคอมพิวเตอร์ทำให้การคำนวณค่าต่าง ๆ คำนวณได้รวดเร็ว ปัญหาต่าง ๆ ที่แต่เดิมยากที่จะหาคำตอบได้ ปัจจุบันก็ใช้เครื่องคอมพิวเตอร์คำนวณหาคำตอบ ทำให้การประยุกต์ใช้ทำได้มากมาย เช่น การตรวจสอบบางอย่างทางการแพทย์ การประมวลผลงาน ก็เป็นสิ่งที่เกิดขึ้นจากการคำนวณ ปัญหาแบบมีโครงสร้างเป็นปัญหาที่มีเพียงส่วนน้อยนิดเมื่อเทียบกับปัญหาทั้งหมดที่เผชิญอยู่ในชีวิต แต่ปัญหาที่มีโครงสร้างก็สร้างความมั่นใจให้กับผู้ดำเนินการและตัดสินใจ เพราะมีความแน่นอนในหลักการทางวิชาการ ทำให้ได้คำตอบที่ถูกต้อง และให้ผลดีกับผู้ตัดสินใจ การเรียนรู้การแก้ปัญหาแบบมีโครงสร้างจึงต้องอาศัยหลักและทฤษฎีต่าง ๆ มากมาย

ลองนึกถึงโจทย์ปัญหาต่าง ๆ เช่น ถ้าจะเลือกของสองสิ่งที่ราคาต่างกัน จะเลือกอะไรดี โดยตัดความชอบออก เราก็จะต้องหาทางตัดสินปัญหา ถ้าเป็นปัญหาแบบโครงสร้างเราก็คงดูที่ราคาและประโยชน์ใช้สอย ตลอดจนคุณภาพของสินค้านั้น ถ้าประโยชน์ใช้สอยสามารถบอกเป็นตัวเลขได้ คุณภาพก็บอกถึงอายุการใช้งานได้ การตัดสินใจเลือกคงไม่ยาก เพราะเป็นปัญหาแบบโครงสร้าง แต่เราจะพบว่ามีเงื่อนไขความพอใจ หรือเงื่อนไขบางอย่างไม่สามารถประเมินเป็นตัวเลขได้ จึงยากที่จะสร้างโมเดลทางคณิตศาสตร์เพื่อคิดคำนวณหาผลลัพธ์ได้

ตัวอย่างของปัญหาโครงสร้าง เช่น หากเราเป็นผู้ผลิตสินค้าชนิดหนึ่ง โดยตั้งราคาขายไว้ที่ 100 บาทต่อหน่วย การลงทุนผลิตสินค้าชนิดนี้ประกอบด้วยต้นทุนคงที่ เช่น ค่าแม่พิมพ์สำหรับฉีดพลาสติก ค่าดำเนินการออกแบบผลิตภัณฑ์ ต้นทุนคงที่ใช้ทั้งหมด 200,000 บาท การผลิตยังต้องใช้วัตถุดิบซึ่งเป็นต้นทุนผันตามการผลิต โดยมีต้นทุนแปรผันส่วนนี้เท่ากับ 20 บาทต่อหน่วย

คำถามมีอยู่ว่า จะต้องผลิตและขายให้ได้เท่าไรจึงจะคุ้มทุน โดยสมมุติว่า จุดต่ำสุดที่ผลิตและขายได้ทั้งหมด

ปัญหานี้เป็นปัญหาการหาจุดคุ้มทุนที่รู้จักกันดี ที่สามารถสร้างโมเดลทางคณิตศาสตร์ได้ง่าย โดยให้
P เป็นราคาขายต่อหน่วย
R เป็นรายรับจากการขาย
N เป็นจำนวนที่ผลิต
ดังนั้น
R
=   PN

และ F เป็นต้นทุนคงที่
และ V เป็นต้นทุนผันแปรต่อหน่วย
TC คือต้นทุนรวม

ดังนั้น
TC
= VN + F

การที่จะต้องให้ได้เท่าทุน   R   =  TC   หรือ
PN = VN + F
เราสามารถคำนวณหาคำ   N   ได้
100 N = 20N + 200000
80 N = 200,000
N = 2,500 หน่วย
เมื่อนำปัญหานี้มาเขียนกราฟ โดย แกน X แทนจำนวนหน่วย   แกน Y แทนจำนวนเงิน ลักษณะของกราฟแสดงให้เห็นจุดคุ้มทุน หรือจุดที่ได้กำไรเป็น 0

การเขียนกราฟทำให้ง่ายต่อการตัดสินใจ และทำให้ทราบว่า ถ้าผลิตและขายได้จำนวนเท่าไร จึงจะได้กำไรหรือขาดทุน ทำให้การตัดสินใจทำได้ง่ายขึ้น


ที่มา: รศ. ยืน ภู่วรวรรณ, สำนักบริการคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์