Existing Landslide Software

Presented by Asst. Prof. Dr. Pakinee Aimmanee SIIT, Thammasat University

> For Landslide workshop NECTEC June 1-2, 2017

Objectives

To review the existing software packages that are available for us to use.

- To study the software packages in the following aspects
 - Required Input
 - Output

Software Packages to be reviewed

- Scoop3D
- Chasm
- Sim-Slope

Scoop3D

About Scoop3D

- It is developed by <u>United States Geological</u> <u>Survey</u>(USGS)
- It is software to analyze 3D slope stability.
- It systematically searches a digital landscape and compute the stability of 3D potential landslide.

Input: Digital Elevation Model (DEM)

DEM is a digital representation 3 dimensional information (X, Y, Z) of the earth surface.

About the software

- The program can be downloaded over the Internet at <u>http://pubs.usgs.gov/tm/14/a01</u>
- It is free of charge.
- Available for both Windows (25 MB) and Mac OS (63 MB)
- It can be run from either a command line or user interface.

Running Program via command line

Ξ

C:\Users\SCOOPSuser\Scoops3D\examples\StHelens\Scoops3D_1.0win.exe

Executing Scoops3D

Input file name? R_sthel.scp Reading input file: R_sthel.scp

Opening DEM file: input\sthel_res100mDEM.asc

R_sthel.scp - Starting search using Scoops3D 9; coarse search , 10 % completed, R_sthel.scp - Search node: 25. 176 trial surfaces analyzed R_sthel.scp - Search node: 17; coarse search , 20 % completed, 41. 1089 trial surfaces analyzed R_sthel.scp - Search node: 25; coarse search , 30 % completed, 65. 2493 trial surfaces analyzed R_sthel.scp - Search node: 33; coarse search , 40 % completed, 81. 3830 trial surfaces analyzed 1, R_sthel.scp - Search node: 49; coarse search , 50 % completed, 5157 trial surfaces analyzed R_sthel.scp - Search node: 57; coarse search , 60 % completed, 25. 6589 trial surfaces analyzed R_sthel.scp - Search node: 65; coarse search , 70 % completed, 41. 7992 trial surfaces analyzed R_sthel.scp - Search node: 73; coarse search , 80 % completed, 65. 9450 trial surfaces analyzed R_sthel.scp - Search node: 81 10490 trial surfaces analyzed 81; coarse search , 90 % completed, 81. R_sthel.scp - coarse search , 100.000 % complete, 10688 trial surfaces R_sthel.scp - Search node: 9; fine search # 1 , 10 % completed, 41. 11897 trial surfaces analyzed R_sthel.scp - Search node: 13; fine search # 1, 20 % completed, 73. 14970 trial surfaces analyzed R_sthel.scp - Search node: 85 18211 trial surfaces analyzed 21; fine search # 1, 30 % completed, 85.

Running Program via user interface

Acceptor 1			
Edit View Bun Options Help			
untitled.scp			
Description (120 characters or less):			
		Units	
Topography			
DEM file name:			
		Horizontal resolution:	
	Browse	Maximum elevation:	
		Length units:	
Subsurface Conditions			
Subsurface Conditions			
Subsurface Conditions Material properties:			
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p	roperties file		
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p Number of layers:	roperties file		
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p Number of layers: Groundwater configuration:	roperties file		
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p Number of layers: Groundwater configuration: None C Ru C Piezometric surface file C	roperties file 3D pressure-head fi	ile C 3D variably saturated file	
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p Number of layers: Groundwater configuration: None C Ru C Piezometric surface file C M	oroperties file 3D pressure-head fi ethod for water con	ile ← 3D variably saturated file tent:	
Subsurface Conditions Material properties: Homogeneous C Layer files C 3D material p Number of layers: Groundwater configuration: None C Ru C Piezometric surface file C M Earthquake loading:	roperties file 3D pressure-head fi ethod for water con	ile C 3D variably saturated file tent:	

Input and Configuration Options

- Input: DEM
- Surface Conditions:
 - Material properties (Homogeneous or Layers)
 - Groundwater configuration
 - Earthquake loading
- Stability analysis: limit equilibrium method
 - Bishop Simplified
 - Ordinary method of slices
- Searching methods
 - Box Search
 - Single Trial Surface
 - File Search

Output: Stability Results

B

D

C

CHASM

About CHASM

- CHASM is an integrated slope hydrology/slope stability software package.
- Support analysis and simulations
- The dynamics of slope hydrology are computed using a finite difference formulation that accommodates unsaturated and saturated soil water conditions.

Highlights

- Can create the slope geometry file for research purposes
- Edit all slope input files

Define the Data

Stability analysis

- CHASM uses the Bishop method of slices to perform slope stability analysis.
- Searching methods:

× Storm data Rainfall -Time 20 Length of simulation Precipitation mm/hr 10 hrs 60 Iteration period secs No interception model C Using canopy model C Using vegetation Storm start time hrs 2 11 Effective ppt (grass) mm/hr Storm stop time hrs 5 Effective ppt (tree) 18 mm/hr Storm Hour 4 23 Cancel Help OK 4

etation cover	×	
Entire slope	Properties at top of column	
Detention capacity 10 mm Maximum evaporation 0.0005 mm/hr Image: No interception model Image: Solid Change s	Column 3 Cover type Acacia	
Thatch effect Storm start 0 hr Storm stop 1 hr Current hour <u>1</u> Precipitation per hour 20 mm Effective precipitation 20 mm	Strength parameters Root tensile strength 30 Root area ratio 6 Effective cohesion 0 KPa Friction angle 33	

Output					Ν		×
Eile					45		
Input file 10 hour :	: simulation						
Hour 1	FOS 1.2	X16 m	Y14 m	Radius 6.5 m	Mass 214.53 Kg	Runout 3.82 m	
Hour 2	FOS 1.21	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 3	FOS 1.22	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 4	FOS 1.22	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 5	FOS 1.22	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 6	FOS 1.22	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 7	FOS 1.23	X16 m	Y13 m	Radius 6.5 m	Mass 323.89 Kg	Runout 3.82 m	
Hour 8	FOS 1.2	X16 m	Y13 m	Radius 10 m	Mass 1.32e+03 Kg	Runout 3.82 m	
Hour 9	FOS 1.2	X16 m	Y13 m	Radius 10 m	Mass 1.32e+03 Kg	Runout 3.82 m	
Hour 10 Finish !	F0S 1.22	X 16 m	Y 13 m	Radius 10 m	Mass 1.32e+03	Kg Runout 3.82 m	

Input Data

Options of data

- Slope profile
- Soils
- Vegetation
- Canopy
- Storm
- Reinforcements
- Slip surface
- Boundary condition
- Initial conditions

Simplified Slope stability (SimSlope)

About SimSlope

- Invented by GeoLogismiki, a Greec software company that develops software programs for geotechnical engineering tasks.
- It can be used mainly for preliminary analysis of slopes.

It is designed for performing a quick stability check on a given slope and to get a quick estimate regarding stability and potential failure surface.

Cost

- Free Trail for 30 days
- License:
 - 1 249 Euro
 - 2-5 224 Euro/license
 - 6-10 200 Euro/license

Requirements

SimSlope has been tested on IBM compatible machines using Windows® 7, 8, 8.1 and 10 operating system

Main Features

- Simple to use Computer Aided Designed (CAD) interface
- Drafting tools to quickly define slope geometry
- Support for linear external loads and water line
- Fine tuning parameters for locating critical failure shape

🛋 🛅 🔚 SimSlope v	.1.0.1.5			- 0 ×
File General 🧐 Ora	aw 📄 Calculation			0
Page Setup Set Scale 2 2	GridStep 1.00 C	1	GE	
M			140	WE A
10 05 0 05	10, 15, 120, 125, 130, 135, 140, 145, 140	5.5 6.0 6.5 7.0 7.5 8.0 6.5	190, 195, 100, 100,5 111,0 111,5 120, 120,5 130	13.5 14.0 134.5 15.0 13.3 125
10.0				
9.5				
9.0				
85				
8.0				
7.5				
7.0				
6.5		6		
6.0		0		
55				
50				
*				
3.5				
3.0 _				
2.5				
2.0				
1.5				
1.0				
0.5				
	10 A. J. C. 10 A.			
A : -0.79 m, Y : -0.07 m,	wonking Layer: Ground Sufface		/	

Setting Menu

Draw Toolbar

Calculation Tool Bar

alculation Parameters	Auto search parameters X	
General Calculation F	Num. of trial surfaces to test 5	
Direction of move	Number of points on surface 7	Calculating process
Number o		Calculation in progress. Please wait
FoS tol	Initial Fos 1.20	Current FoS = 1.856 Minimum FoS = 1.854
Min.		
Minimum Depth /	Entrance angle limits (toe)	Close
	Minimum angle 35.00	
Partial Factors	Maximum angle 55.00 +88.88	
Effective cohesic	Exit angle limits (crest)	
Effective friction angle	Minimum angle 30.00 -***.**	
Static Seismic Factor		
Horizontal seismic coe	Maximum angle	
Vertical seismic coe	Animate results	
	V OK X Cancel	

THE END

DEM, DTM, DSM

DEM: include only bare terrain

DSM: including terrain and terrain features like natural features and man made features

DTM- including terrain, geological, climatic, geomorphology, climatology, meteorology, and oceanology factors

Limit equilibrium methods

Analysis output: a factor of safety (Fs)

Fs= resisting force $=\frac{s}{\tau}=\frac{c'+\sigma'\tan\phi'}{\tau}$

c=cohesion, σ'= normal stress, τ sheering strength, φ' angle of internal friction
Fs < 1 → unstable

Stability Analysis:

Methods used: limit equilibrium methods

Limit equilibrium methods investigate the equilibrium of a soil mass tending to slide down under the influence of gravity

A typical cross-section of a slope used in two-dimensional analyses.