International Workshop on Landslide Risk Assessment and Management

Climate Change and Potential Impacts on Landslides

NECTEC, Thailand Science Park 2nd June, 2017

Sandhya Babel

School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University

A. T. A. Peiris

Water Engineering and Management, School of Engineering and Technology, Asian Institute of Technology, Thailand

Outline

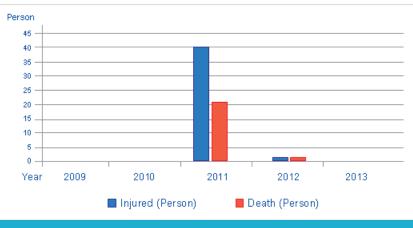
- Introduction
- Climate Change and Landslide
- Quantification of Climate Change
- Case study: Analysis of changes in climate indices in Ping River basin, Thailand
 - Study Area
 - Hypothesis
 - Results
 - Conclusions

Introduction

- Occur when masses of rock, earth or debris move down a slope
- Mudslides develop when water rapidly accumulates in the ground. Usually starts on steep slopes and can be activated by natural disasters
- Areas where vegetation is destroyed due to human activity or by wildfires, especially on slopes, are particularly vulnerable during and after heavy rain
- Rapidly moving water and debris can lead to trauma; broken electrical, water, gas and sewage lines that can result injury or illness

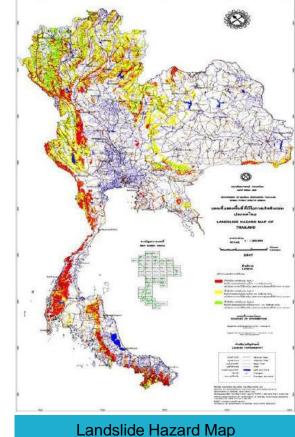
Landslides ...

Introduction (Cont...)


Facts and Figures: 2015 Asia-Pacific losses by disaster type

Disaster Type	Occurrence	Deaths	Affected	Economic Damage (billion US\$)
Flood	63	1863	21,661,443	11.5
Storm	43	446	9,135,551	11.8
Earthquake	17	9327	6,484,533	5.2
Landslide	15	626	45,234	-
Extreme temperature	4	3536	1,045,000	-
Others	18	248	20,883,788	16.7
Total	160	16046	59,255,549	45.1
		Source: D	Disasters in Asia and the Pa	cific: 2015 year in Review, UNESCAP

- Landslides are 7th ranked killer; Asia suffered 220 landslides in the past century
- North, Central and South America have caused the most deaths and injuries (25,000+)
- Europe landslides are the most expensive (\$ 23 million / landslide)


Introduction (Cont...)

- Thailand has experienced an increasing occurrence and intensity of landslides due to:
 - anthropogenic activities like deforestation, cultivation of cash crops in sloping area, destruction of land's surface etc.

Impacts of landslides in Thailand (2009 - 2013)

Landslides in Thailand

Source: National Disaster Risk Management Plan (2015)

Introduction (Cont...)

Common Causes...

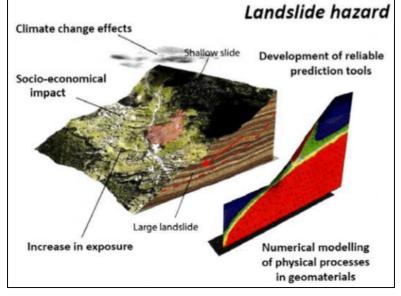
Natural Factors

- Gravity: Works more effectively on the steeper slopes
- Earthquakes: Areas with steep slopes, the soil and rock slips
- **Geological factors:** Geologically weak areas with permeable sands and gravels above bedrocks
- Heavy rainfall: Storm water runoffs results in the rise of the groundwater level, making some slopes unstable and slides occur
- Forest fires: Cause soil erosion and induce floods
- Volcanoes: Stratovolcanoes, prone to sudden collapse in wet conditions

Anthropogenic Factors

- Deforestation, improper land use practices in agriculture and irregular settlement patterns
- In-appropriate drainage system
 increases the vulnerability
- Deep excavations on slopes for building, roads, canals and mining makes critical slopes vulnerable

- > Channels along a stream or a river
- Areas, Where landslides have occurred before
- Steep slopes and the areas at the bottom of the canyons
- Areas where vegetation has been destroyed
- Areas where surface runoff is directed
- Slopes that have been modified or altered for construction purposes
- Areas with improper drainage system


Climate Change and landslide Climate Variables...

• Precipitation:

Increase in annual rainfall totals for stormy events and their intensities appear to be increasing. Precipitation falling on higher altitudes can cause increase of shallow landslides in steep mountainous slopes

• Temperature:

Glacial retreat and the melting of permafrost will cause more landslides, debris flows, and rock falls

Climate Change and increased human activities in landslide prone areas will increase the risk of landslides

Source: Laloui et al., 2010 | Effect of Climate Change on Landslide Behaviour

Climate Change and Landslide (Cont...) Climate Change and Pathways to Impacts

Climate Change	Condition/Process affected	Potential slope stability response
Increase in precipitation totals	Wetter antecedent conditions	 Less rainfall required to reach the critical water content Reduction in soil capillary suction, softened layers can act as lubricants Higher water tables – reduction in shear strength
	Increased weight	 Increased bulk density, leading to decrease in shear strength/stress ration in cohesive material
	Higher water tables for longer periods	More frequent attainment of critical water content during rainfall events
	Increased lubrication of contact surfaces between minerals	Reduction on friction
	Increase in river discharge	 Increase bank scour and removal of lateral and basal support from slopes Higher lake levels increase in bordering slope water tables

Source: Crozier (2010) | Deciphering the effect of climate change on landslide activity: A review

Climate Change and Landslide (Cont...) Climate Change and Pathways to Impacts

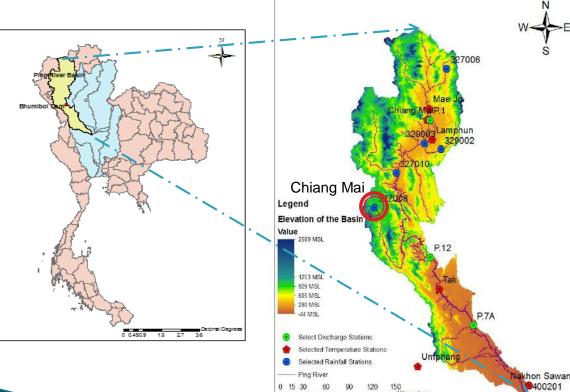
Climate Change	Condition/Process affected	Potential slope stability response
Increase in rainfall intensity	Infiltration more likely to exceed subsurface drainage rates	 Landslide triggering by reduction in effective normal stress leading to reduction in shear strength
	Rapid build up of perched water tables	Increase in cleft water pressure
	Increased through flow	 Increase in seepage and drag forces, particle detachment and piping. Enhances drainage unless blockage occurs.
Shift in cyclone tracks and other rain bearing weather systems	Areas previously unaffected, subject to high rainfall	 Rapid adjustment of slopes to new climate regime
Increased variability in precipitation and temperature	More frequent wetting and drying cycles	 Increase fissuring, widening of joint systems Reduction in cohesion and rock mass joint friction

Source: Crozier (2010) | Deciphering the effect of climate change on landslide activity: A review

Climate Change and Landslide (Cont...)

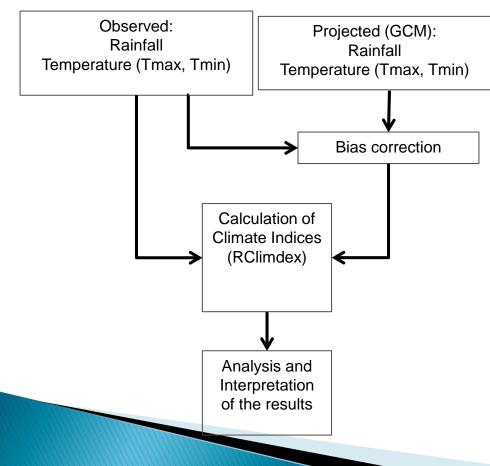
Climate Change and Pathways to Impacts

Climate Change	Condition/Process affected	Potential slope stability response
Increase temperature	Reduction in antecedent water conditions through evapotranspiration	 Lower antecedent water status - more rain required to trigger slides
	Reduction in interstitial ice and permafrost	 Reduction in cohesion in jointed rock masses, debris and soil
	Rapid snow melt- runoff and infiltration	Build up of porewater pressure and strength reduction
	Reduction in glacier volume	Removal of lateral support to valley slide slopes
	Increased sea level	Enhanced basal erosion on coasts, increase in groundwater levels on coastal slopes
Increased wind speed and duration	Enhanced evapotranspiration	Reduction of soil moistureEnhanced drying and cracking
	Enhanced root levering by trees	Loosening and dislodging joint blocks
	Increased wave action on shorelines	Removal of slope lateral support
S	ource: Crozier (2010) Deciphering the	effect of climate change on landslide activity: A review


Quantification of Climate Change

• Change in climate: quantified using climate trends and variability in the climate indices

Climate Change	Index	Definition	Unit
Precipitation totals	PRCPTOT	Annual total precipitation in wet days (RR> = 1mm)	mm
	R99p	Annual total precipitation when RR>99th percentile in baseline	mm
	R95p	Annual total precipitation when RR>95 th percentile in baseline	mm
	Rx1 day	Monthly maximum 1-day precipitation	mm
	Rx5 day	Monthly maximum consecutive 5-day precipitation	mm
	R40mm	Annual count of days when precipitation >= 40 mm	days
Rainfall intensity	SDII	Annual total precipitation/ number of wet days	mm/day
Variability in precipitation and temperature	CDD	Maximum number of consecutive days with RR<1mm	days
	R_{cv} or T_{cv}	Coefficient of variance	%
Temperature	TXx	Monthly maximum value of daily maximum temp	°C
	TNn	Monthly minimum value of daily minimum temp	°C


Case study: Analysis of changes in climate indices in Ping River Basin, Thailand

Study Area — Ping River Basin

- Area : 35,000 km²
- Annual Average Rainfall : 1079 mm
- Annual Average Temp. : 26.3 °C
- Mainly affected by Monsoon
- Agro-based Economy
- Elevation Range ~ 44m 2500m
- Series of landslide activities are reported in the upper part of the basin
- In May 2006, north of Thailand, including Uttaradit, Sukhothai, Phrae, Lampang and Nan were subjected to serious flash flooding and deadly landslides: 87 deaths

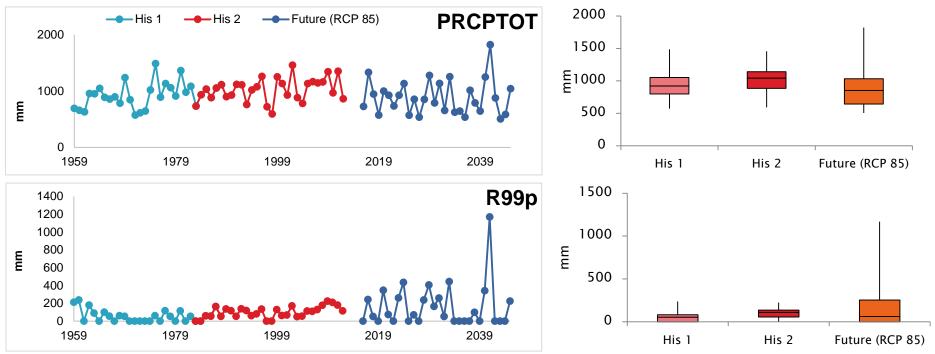
Methodology

• Time Windows:

Historical 1: 1959 – 1988 Historical 2: 1983 – 2012 Future : 2016 – 2045

 Climate Projections (GCM): CISRO Mk3.6 (suitable for Ping river)

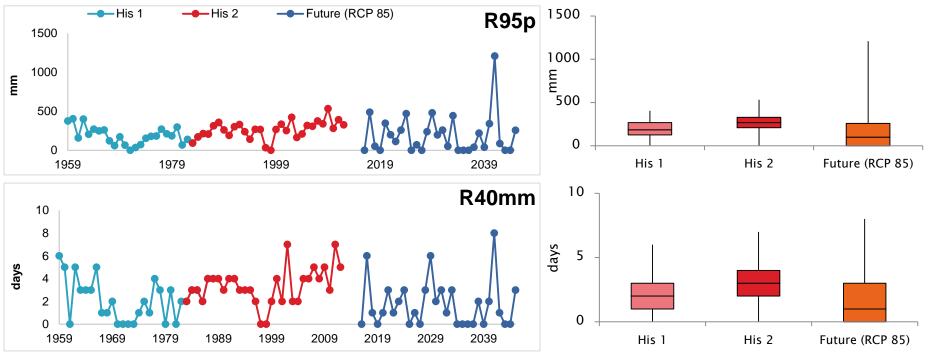
Future Pathway: RCP 8.5 scenario (extreme)


• 9 rainfall related climate indices are analyzed

Hypothesis

Index	Condition	Potential slope stability response
PRCPTOT (mm)	Increase	
R99p (mm)	Increase	
R95p (mm)	Increase	More rainfall; As soil reaches to the critical water content, reduction in slope stability and more possibility of occurrence of landslide
Rx1 day (mm)	Increase	
Rx5 day (mm)	Increase	
R40mm (days)	Increase	Number of heavy rainfall days are increasing; slope stability may be reduced; High chance of occurrence of landslide
SDII (mm/day)	Increase	Infiltration can exceed subsurface drainage rates; or increase of through flow; more possibility of occurrence of landslide
CDD (days)	Increase	Less number of rainy days; less likely to occur a landslide
R _{cv} (%)	Increase	More frequent wetting and drying cycle; likely to induce a landslide

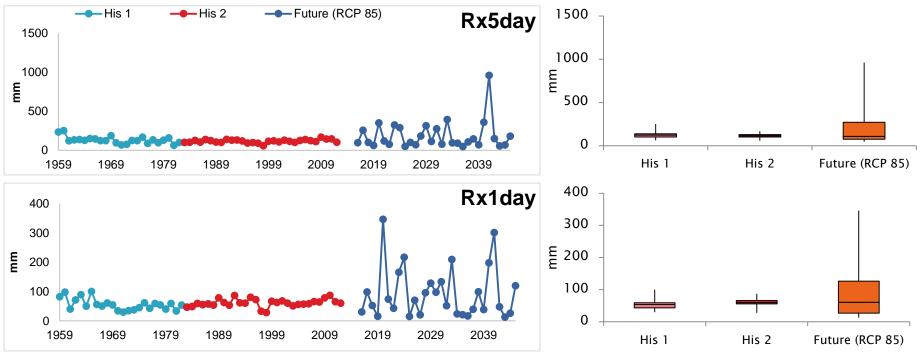
Precipitation Totals



Both PRCPTOT and R99p show slight increase in His 2 period;

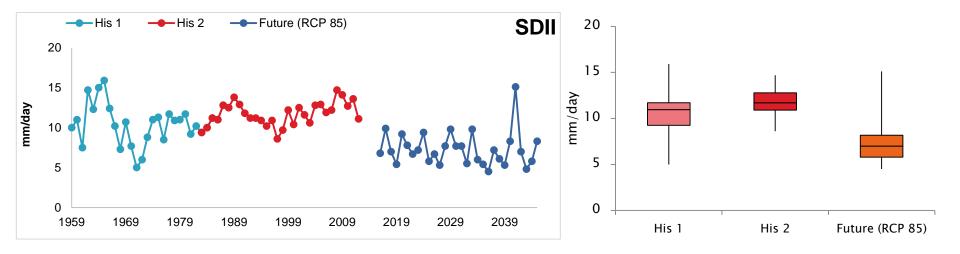
For future scenario, although median decreasing but uncertainty is increasing

Results (Cont...)


Precipitation Totals

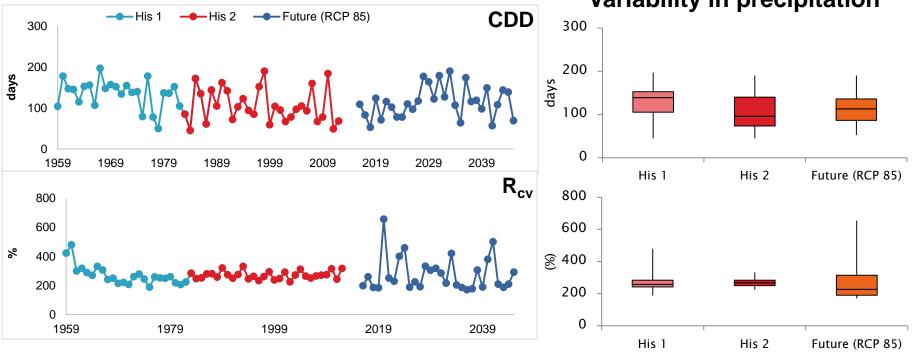
 Both indices are increasing in His 2 period but in the future time period, variability is increasing

Results (Cont...)


Precipitation Totals

 In both indices the trend and change is insignificant but in the future variability is projected to increase compared to His 1 and His 2 periods

Results (Cont...)


Rainfall Intensity

- SDII index shows a slight increase in trend and decrease in the variability in His 2 period with respect to His1
- In future, the trend shows significant increase in the variability

Results (Cont...)

- CDD index displays gradual decrease in the historical period; in future it is expected to increase slightly, variability almost remains same
- Annual rainfall shows a decrease in the variability for his period 2 but significant increase in variability in future

Conclusions

- Study of the historical data indicated that various indicators used to reflect precipitation totals have increased in past.
- Although median values of the studied indices showed a decrease in the future compared to historical period, but a higher variability has been projected which may trigger more landslides.
- This case study considered only precipitation in the future but there are many other factors which may influence occurrence of landslides.
- Only one GCM was used in this study; further study using multi-models and multi-scenarios is suggested.

Thank you !!!

sandhya@siit.tu.ac.th